Amoeboid Microglial Cells and not Astrocytes Synthesize TNF-alpha in Swiss Mouse Brain Cell Cultures

Eur J Neurosci. 1990;2(9):762-768. doi: 10.1111/j.1460-9568.1990.tb00466.x.

Abstract

The role of tumour necrosis factor (TNF-alpha) in brain physiology and pathology has been the focus of several studies. However, the source of this lymphokine in the central nervous system and the regulation of its synthesis is still poorly understood. We have therefore used purified astrocytes and brain macrophages in culture to compare the abilities of these two cell types to synthesize TNF-alpha and its mRNA. We find that, in the Swiss mouse, no significant TNF activity or TNF-alpha mRNA are produced by astrocytes, even following activation with lipopolysaccharides (LPS). On the other hand, purified microglial cells express a cytotoxic activity able to kill TNF-sensitive LM cells. Part of this activity is released into the culture medium and part remains bound to the membrane after mild paraformaldehyde treatment, demonstrating the existence in the culture of the soluble and membrane-bound forms of TNF activity. The fact that amoeboid microglial cells, and not astrocytes, are the actual source of TNF in brain cultures was further demonstrated by Northern blot analysis and in situ hybridization using a TNF-alpha specific oligonucleotide probe. The definition of the cell type which, in the CNS, is responsible for TNF synthesis will allow the regulation of this lymphokine to be analysed and opens the way for a better understanding of the interactions between amoeboid microglial cells and the other cell types which make up the nervous system.