Molecular, pharmacological and functional diversity of 5-HT receptors

Pharmacol Biochem Behav. 2002 Apr;71(4):533-54. doi: 10.1016/s0091-3057(01)00746-8.

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are subserved by as many as 13 distinct heptahelical, G-protein-coupled receptors (GPCRs) and one (presumably a family of) ligand-gated ion channel(s). These receptors are divided into seven distinct classes (5-HT(1) to 5-HT(7)) largely on the basis of their structural and operational characteristics. Whilst this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity continues to emerge. The challenge for modern 5-HT research has therefore been to define more precisely the properties of the systems that make this incredible diversity possible. Much progress in this regard has been made during the last decade with the realisation that serotonin is possibly the least conservative monoamine transmitter and the cloning of its many receptors. Coupled with the actions of an extremely avid and efficient reuptake system, this array of receptor subtypes provides almost limitless signalling capabilities to the extent that one might even question the need for other transmitter systems. However, the complexity of the system appears endless, since posttranslational modifications, such as alternate splicing and RNA editing, increase the number of proteins, oligomerisation and heteromerisation increase the number of complexes, and multiple G-protein suggest receptor trafficking, allowing phenotypic switching and crosstalk within and possibly between receptor families. Whether all these possibilities are used in vivo under physiological or pathological conditions remains to be firmly established, but in essence, such variety will keep the 5-HT community busy for quite some time. Those who may have predicted that molecular biology would largely simplify the life of pharmacologists have missed the point for 5-HT research in particular and, most probably, for many other transmitters. This chapter is an attempt to summarise very briefly 5-HT receptor diversity. The reward for unravelling this complex array of serotonin receptor--effector systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas.

Publication types

  • Review

MeSH terms

  • Adenylyl Cyclases / metabolism
  • Animals
  • Humans
  • Receptors, Serotonin / chemistry*
  • Receptors, Serotonin / classification
  • Receptors, Serotonin / drug effects*
  • Receptors, Serotonin / genetics

Substances

  • Receptors, Serotonin
  • Adenylyl Cyclases