Combination of protease inhibitors for the treatment of HIV-1-infected patients: a review of pharmacokinetics and clinical experience

Antivir Ther. 2001 Dec;6(4):201-29.

Abstract

The use of highly active antiretroviral therapy, the combination of at least three different antiretroviral drugs for the treatment of HIV-1 infection, has greatly improved the prognosis for HIV-1-infected patients. The efficacy of a combination of a protease inhibitor (PI) plus two nucleoside analogue reverse transcriptase inhibitors has been well established over a period of up to 3 years. However, virological treatment failure has been reported in 40-60% of unselected patients within 1 year after initiation of a PI-containing regimen. This observation may, at least in part, be attributed to the poor pharmacokinetic characteristics of the PIs. Given as a single agent the PIs have several pharmacokinetic limitations; relatively short plasma-elimination half-lives and a modest and variable oral bioavailability, which is, for some of the PIs, influenced by food. To overcome these suboptimal pharmacokinetics, high doses (requiring large numbers of pills) must be ingested, often with food restrictions, which complicates patient adherence to the prescribed regimen. Positive drug-drug interactions increase the exposure to the PIs, allowing administration of lower doses at reduced dosing frequencies with less dietary restrictions. In addition to increasing the potency of an antiretroviral regimen, combinations of PIs may enhance patient adherence, both of which will contribute to a more durable suppression of viral replication. The favourable pharmacokinetics of PIs in combination are a result of interactions through cytochrome P450 3A4 (CYP3A4) isoenzymes and, possibly, the multi-drug transporting P-glycoprotein (P-gp). Antiretroviral synergy between PIs and non-overlapping primary resistance patterns in the HIV-1 protease genome may further enhance the antiretroviral potency and durability of combinations of PIs. Many combinations contain ritonavir because this PI has the most pronounced inhibiting effects on CYP3A4. The combination of saquinavir and ritonavir, both in a dose of 400 mg twice-a-day, is the most studied double PI combination, with clinical experience extending over 3 years. Combination of a PI with a low dose of ritonavir (< or = 400 mg/day), only to boost its pharmacokinetic properties, seems an attractive option for patients who cannot tolerate higher doses of ritonavir. A recently introduced PI, lopinavir, has been co-formulated with low-dose ritonavir, which allows for a convenient three-capsules, twice-a-day dosing regimen. In an attempt to prolong suppression of viral replication combinations of PIs are becoming increasingly popular. However, further clinical studies are needed to identify the optimal combinations for treatment of antiretroviral naive and experienced HIV-1-infected patients. This review covers combinations of saquinavir, indinavir, nelfinavir, amprenavir and lopinavir with different doses of ritonavir, as well as the combinations of saquinavir and indinavir with nelfinavir.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / physiology
  • Acquired Immunodeficiency Syndrome / drug therapy*
  • Child
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme Inhibitors
  • Cytochrome P-450 Enzyme System / physiology
  • Drug Interactions
  • Drug Monitoring
  • Drug Resistance, Viral
  • Drug Therapy, Combination
  • HIV Protease Inhibitors / administration & dosage*
  • HIV Protease Inhibitors / pharmacokinetics*
  • HIV-1*
  • Humans
  • Mixed Function Oxygenases / antagonists & inhibitors
  • Mixed Function Oxygenases / physiology
  • Ritonavir / administration & dosage

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Cytochrome P-450 Enzyme Inhibitors
  • HIV Protease Inhibitors
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • CYP3A protein, human
  • Cytochrome P-450 CYP3A
  • CYP3A4 protein, human
  • Ritonavir