Conformational specificity of mini-alphaA-crystallin as a molecular chaperone

J Pept Res. 2001 May;57(5):428-34. doi: 10.1034/j.1399-3011.2001.00871.x.

Abstract

The chaperone activity and biophysical properties of the 19 amino acid peptide DFVIFLDVKHFSPEDLTVK, identified as the functional element in alphaA-crystallin and here referred to as mini-alphaA-crystallin, were studied using light scattering and spectroscopic methods after altering its sequence and enantiomerism. The all-D and all-L conformers of the peptide do not show marked differences in their chaperone-like activity against heat-induced aggregation of alcohol dehydrogenase at 48 degrees C and dithiothreitol-induced aggregation of insulin. The retro peptide does not show any secondary structure and is also unable to act like a chaperone. Both all-L and all-D peptides lose their beta-sheet conformations, hydrophobicity and chaperone-like activity at temperatures > 50 degrees C. However, upon cooling, a significant portion of those properties was regained, suggesting temperature-dependent, reversible structural alterations in the peptides under investigation. We propose that both the hydrophobicity and beta-sheet conformation of the functional element of alphaA-crystallin are essential for chaperone-like activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Circular Dichroism
  • Crystallins / chemistry*
  • Molecular Chaperones / chemistry*
  • Molecular Sequence Data
  • Protein Structure, Secondary
  • Spectrophotometry, Ultraviolet

Substances

  • Crystallins
  • Molecular Chaperones