beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility

J Clin Invest. 2000 Sep;106(5):697-703. doi: 10.1172/JCI9323.

Abstract

The cardiac beta-adrenergic pathway potently stimulates myocardial performance, thereby providing a mechanism for myocardial contractile reserve. beta-Adrenergic activation also increases cardiac nitric oxide (NO) production, which attenuates positive inotropy, suggesting a possible negative feedback mechanism. Recently, in vitro studies suggest that stimulation of the beta(3)-adrenoceptor results in a negative inotropic effect through NO signaling. In this study, using mice with homozygous beta(3)-adrenoceptor deletion mutations, we tested the hypothesis that the beta(3)-adrenoceptor is responsible for beta-adrenergic activation of NO. Although resting indices of myocardial contraction were similar, beta-adrenergic-stimulated inotropy was increased in beta(3)(-/-) mice, and similar hyper-responsiveness was seen in mice lacking endothelial NO synthase (NOS3). NOS inhibition augmented isoproterenol-stimulated inotropy in wild-type (WT), but not in beta(3)(-/-) mice. Moreover, isoproterenol increased myocardial cGMP in WT, but not beta(3)(-/-), mice. NOS3 protein abundance was not changed in beta(3)(-/-) mice, and cardiac beta(3)-adrenoceptor mRNA was detected in both NOS3(-/-) and WT mice. These findings indicate that the beta(3)-adrenergic subtype participates in NO-mediated negative feedback over beta-adrenergic stimulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adrenergic beta-Agonists / pharmacology
  • Animals
  • Feedback
  • Isoproterenol / pharmacology
  • Mice
  • Mice, Mutant Strains
  • Myocardial Contraction / physiology*
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase / genetics
  • Nitric Oxide Synthase / metabolism
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Receptors, Adrenergic, beta / genetics
  • Receptors, Adrenergic, beta / metabolism*
  • Receptors, Adrenergic, beta-3
  • Sympathetic Nervous System / physiology

Substances

  • Adrenergic beta-Agonists
  • Receptors, Adrenergic, beta
  • Receptors, Adrenergic, beta-3
  • Nitric Oxide
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos3 protein, mouse
  • Isoproterenol