Skip to main content
Log in

Intracellular Pharmacokinetics of Antiretroviral Drugs in HIV-Infected Patients, and their Correlation with Drug Action

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

In patients infected by HIV, the efficacy of highly active antiretroviral (ARV) therapy through the blockade of different steps of the retrovirus life cycle is now well established. As HIV is a retrovirus that replicates within the cells of the immune system, intracellular drug concentrations are important to determine ARV drug efficacy and toxicity. Indeed, nucleoside reverse transcriptase inhibitors (NRTIs), non-NRTIs (NNRTIs), newly available integrase inhibitors and protease inhibitors (PIs) act on intracellular targets. NRTIs are prodrugs that require intracellular anabolic phosphorylation to be converted into their active form of triphosphorylated NRTI metabolites, most of which have longer plasma half-lives than their parent compounds. The activity of intracellular kinases and the expression of uptake transporters, which may depend on cell functionality or their activation state, may greatly influence intracellular concentrations of triphosphorylated NRTI metabolites. In contrast, NNRTIs and PIs are not prodrugs, and they exert their activity by inhibiting enzyme targets directly. All PIs are substrates of cytochrome P450 3A, which explains why most of them display poor pharmacokinetic properties with intensive presystemic first-pass metabolism and short elimination half-lives. There is evidence that intracellular concentrations of PIs depend on P-glycoprotein and/or the activity of other efflux transporters, which is modulated by genetic polymorphism and coadministration of drugs with inhibiting or inducing properties. Adequate assay of the intracellular concentrations of ARVs is still a major technical challenge, together with the isolation and counting of peripheral blood mononuclear cells (PBMCs). Furthermore, intracellular drug could be bound to cell membranes or proteins; the amount of intracellular ARV available for ARV effectiveness is never measured, which is a limitation of all published studies.

In this review, we summarize the findings of 31 studies that provided results of intracellular concentrations of ARVs in HIV-infected patients. Most studies also measured plasma concentrations, but few of them studied the relationship between plasma and intracellular concentrations. For NRTIs, most studies could not establish a significant relationship between plasma and triphosphate concentrations. Only eight published studies reported an analysis of the relationships between intracellular concentrations and the virological or immunological efficacy of ARVs in HIV patients. In prospective studies that were well designed and had a reasonable number of patients, virological efficacy was found to correlate significantly with intracellular concentrations of NRTIs but not with plasma concentrations. For PIs, the only prospectively designed trial of lopinavir found that virological efficacy was influenced by both trough plasma concentrations and intracellular concentrations. ARVs are known to cause important adverse effects through interference with cellular endogenous processes. The relationship between intracellular concentrations of ARVs and their related toxicity was investigated in only four studies. For zidovudine, the relative strength of the association between a decrease in haemoglobin levels and plasma zidovudine concentrations, as compared with intracellular zidovudine triphosphate concentrations, is still unknown. Similarly, for efavirenz and neuropsychological disorders, methodological differences confound the comparison between studies.

In conclusion, intracellular concentrations of ARVs play a major role in their efficacy and toxicity, and are influenced by numerous factors. However, the number of published clinical studies in this area is limited; most studies have been small and not always adequately designed. In addition, standardization of assays and PBMC counts are warranted. Larger and prospectively designed clinical studies are needed to further investigate the links between intracellular concentrations of ARVs and clinical endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Carpenter CC, Cooper DA, Fischl MA, et al. Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel. JAMA 2000 Jan 19; 283(3): 381–90

    Article  PubMed  CAS  Google Scholar 

  2. Hammer SM, Saag MS, Schechter M, et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA Panel. JAMA 2006 Aug 16; 296(7): 827–43

    Article  PubMed  CAS  Google Scholar 

  3. Chen LF, Hoy J, Lewin SR. Ten years of highly active antiretroviral therapy for HIV infection. Med J Aust 2007 Feb 5; 186(3): 146–51

    PubMed  Google Scholar 

  4. Stebbing J, Gazzard B, Douek DC. Where does HIV live?. N Engl J Med 2004 Apr 29; 350(18): 1872–80

    Article  PubMed  CAS  Google Scholar 

  5. US Department of Health and Human Services [DHSS] Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Bethesda (MD): DHSS, 2008 Nov 3 [online]. Available from URL: http://aidsinfo.nih.gov/guidelines/GuidelineDetail.aspx?MenuItem=Guidelines&Search=Off&GuidelineID=7&ClassID=1 [Accessed 2009 Oct 13]

  6. Yeni P. Prise en charge médicale des personnes infectées par le VIH: recommandations du groupe d’experts. Paris: Flammarion, 2008

    Google Scholar 

  7. Rockstroh JK, Bhagani S, Benhamou Y, et al. European AIDS Clinical Society (EACS) guidelines for the clinical management and treatment of chronic hepatitis B and C coinfection in HIV-infected adults. HIV Med 2008 Feb; 9(2): 82–8

    Article  PubMed  CAS  Google Scholar 

  8. Anderson PL, Kakuda TN, Kawle S, et al. Antiviral dynamics and sex differences of zidovudine and lamivudine triphosphate concentrations in HIV-infected individuals. Aids 2003 Oct 17; 17(15): 2159–68

    Article  PubMed  CAS  Google Scholar 

  9. Hennessy M, Clarke S, Spiers JP, et al. Intracellular indinavir pharmacokinetics in HIV-infected patients: comparison with plasma pharmacokinetics. Antivir Ther 2003 Jun; 8(3): 191–8

    PubMed  CAS  Google Scholar 

  10. Rousseau FS, Kahn JO, Thompson M, et al. Prototype trial design for rapid dose selection of antiretroviral drugs: an example using emtricitabine (Coviracil). J Antimicrob Chemother 2001 Oct; 48(4): 507–13

    Article  PubMed  CAS  Google Scholar 

  11. Becher F, Landman R, Mboup S, et al. Monitoring of didanosine and stavudine intracellular trisphosphorylated anabolite concentrations in HIV-infected patients. Aids 2004 Jan 23; 18(2): 181–7

    Article  PubMed  CAS  Google Scholar 

  12. Stretcher BN, Pesce AJ, Frame PT, et al. Pharmacokinetics of zidovudine phosphorylation in peripheral blood mononuclear cells from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother 1994 Jul; 38(7): 1541–7

    Article  PubMed  CAS  Google Scholar 

  13. Stretcher BN, Pesce AJ, Hurtubise PE, et al. Pharmacokinetics of zidovudine phosphorylation in patients infected with the human immunodeficiency virus. Ther Drug Monit 1992 Aug; 14(4): 281–5

    Article  PubMed  CAS  Google Scholar 

  14. MacArthur RD, Novak RM. Reviews of anti-infective agents: maraviroc. The first of a new class of antiretroviral agents. Clin Infect Dis 2008 Jul 15; 47(2): 236–41

    Article  PubMed  CAS  Google Scholar 

  15. Brown KC, Paul S, Kashuba AD. Drug interactions with new and investigational antiretrovirals [published erratum appears in Clin Pharmacokinet 2009; 48: 554]. Clin Pharmacokinet 2009; 48(4): 211–41

    Article  PubMed  CAS  Google Scholar 

  16. Patel IH, Zhang X, Nieforth K, et al. Pharmacokinetics, pharmacodynamics and drug interaction potential of enfuvirtide. Clin Pharmacokinet 2005; 44(2): 175–86

    Article  PubMed  CAS  Google Scholar 

  17. Ray AS, Olson L, Fridland A. Role of purine nucleoside phosphorylase in interactions between 2′,3′-dideoxyinosine and allopurinol, ganciclovir, or tenofovir. Antimicrob Agents Chemother 2004 Apr; 48(4): 1089–95

    Article  PubMed  CAS  Google Scholar 

  18. Anderson PL, Kakuda TN, Lichtenstein KA. The cellular pharmacology of nucleoside- and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities. Clin Infect Dis 2004 Mar 1; 38(5): 743–53

    Article  PubMed  CAS  Google Scholar 

  19. Moyle G. Toxicity of antiretroviral nucleoside and nucleotide analogues: is mitochondrial toxicity the only mechanism?. Drug Saf 2000 Dec; 23(6): 467–81

    Article  PubMed  CAS  Google Scholar 

  20. Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 1999 Apr; 36(4): 289–304

    Article  PubMed  CAS  Google Scholar 

  21. Iwamoto M, Wenning LA, Petry AS, et al. Safety, tolerability, and pharmacokinetics of raltegravir after single and multiple doses in healthy subjects. Clin Pharmacol Ther 2008 Feb; 83(2): 293–9

    Article  PubMed  CAS  Google Scholar 

  22. Correll T, Klibanov OM. Integrase inhibitors: a new treatment option for patients with human immunodeficiency virus infection. Pharmacotherapy 2008 Jan; 28(1): 90–101

    Article  PubMed  CAS  Google Scholar 

  23. Iwamoto M, Wenning LA, Mistry GC, et al. Atazanavir modestly increases plasma levels of raltegravir in healthy subjects. Clin Infect Dis 2008 Jul 1; 47(1): 137–40

    Article  PubMed  CAS  Google Scholar 

  24. Cooper CL, van Heeswijk RP, Gallicano K, et al. A review of low-dose ritonavir in protease inhibitor combination therapy. Clin Infect Dis 2003 Jun 15; 36(12): 1585–92

    Article  PubMed  CAS  Google Scholar 

  25. Moyle GJ, Back D. Principles and practice of HIV-protease inhibitor pharmacoenhancement. HIV Med 2001 Apr; 2(2): 105–13

    Article  PubMed  CAS  Google Scholar 

  26. Becher F, Pruvost A, Goujard C, et al. Improved method for the simultaneous determination of d4T, 3TC and ddI intracellular phosphorylated anabolites in human peripheral-blood mononuclear cells using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2002; 16(6): 555–65

    Article  PubMed  CAS  Google Scholar 

  27. Pruvost A, Becher F, Bardouille P, et al. Direct determination of phosphorylated intracellular anabolites of stavudine (d4T) by liquid chromatography/tandem mass spectrometry [published erratum appears in Rapid Commun Mass Spectrom 2007; 21 (13): 2167]. Rapid Commun Mass Spectrom 2001; 15(16): 1401–8

    Article  PubMed  CAS  Google Scholar 

  28. Compain S, Benech H, Grassi J, et al. Pharmacokinetics of plasma and intracellular metabolites of AZT in PBMC from HIV infected patients on AZT/3TC/nelfinavir therapy. France: Commissariat à l’Énergie Atomique, 2008. (Data on file)

  29. Durand-Gasselin L, Da Silva D, Benech H, et al. Evidence and possible consequences of the phosphorylation of nucleoside reverse transcriptase inhibitors in human red blood cells. Antimicrob Agents Chemother 2007 Jun; 51(6): 2105–11

    Article  PubMed  CAS  Google Scholar 

  30. Colombo S, Beguin A, Telenti A, et al. Intracellular measurements of anti-HIV drugs indinavir, amprenavir, saquinavir, ritonavir, nelfinavir, lopinavir, atazanavir, efavirenz and nevirapine in peripheral blood mononuclear cells by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2005 May 25; 819(2): 259–76

    Article  PubMed  CAS  Google Scholar 

  31. Almond LM, Edirisinghe D, Dalton M, et al. Intracellular and plasma pharmacokinetics of nevirapine in human immunodeficiency virus-infected individuals. Clin Pharmacol Ther 2005 Aug; 78(2): 132–42

    Article  PubMed  CAS  Google Scholar 

  32. Benech H, Théodoro F, Herbet A, et al. Peripheral blood mononuclear cell counting using a DNA-detection-based method. Anal Biochem 2004 Jul 1; 330(1): 172–4

    Article  PubMed  CAS  Google Scholar 

  33. Gao WY, Cara A, Gallo RC, et al. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. ProcNatl Acad Sci U S A 1993 Oct 1; 90(19): 8925–8

    Article  CAS  Google Scholar 

  34. Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994 Nov 9; 140(1): 1–22

    Article  PubMed  CAS  Google Scholar 

  35. Almond LM, Hoggard PG, Edirisinghe D, et al. Intracellular and plasma pharmacokinetics of efavirenz in HIV-infected individuals. J Antimicrob Chemother 2005 Oct; 56(4): 738–44

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez Orengo JF, Santana J, Febo I, et al. Intracellular studies of the nucleoside reverse transcriptase inhibitor active metabolites: a review. P R Health Sci J 2000 Mar; 19(1): 19–27

    PubMed  CAS  Google Scholar 

  37. Rodriguez JF, Rodriguez JL, Santana J, et al. Simultaneous quantitation of intracellular zidovudine and lamivudine triphosphates in human immunodeficiency virus-infected individuals. Antimicrob Agents Chemother 2000 Nov; 44(11): 3097–100

    Article  PubMed  CAS  Google Scholar 

  38. Moore JD, Valette G, Darque A, et al. Simultaneous quantitation of the 5′-triphosphate metabolites of zidovudine, lamivudine, and stavudine in peripheral mononuclear blood cells of HIV infected patients by high-performance liquid chromatography tandem mass spectrometry. J Am Soc Mass Spectrom 2000 Dec; 11(12): 1134–43

    Article  PubMed  CAS  Google Scholar 

  39. King T, Bushman L, Kiser J, et al. Liquid chromatography-tandem mass spectrometric determination of tenofovir-diphosphate in human peripheral blood mononuclear cells. J Chromatogr B Analyt Technol Biomed Life Sci 2006 Nov 7; 843(2): 147–56

    Article  PubMed  CAS  Google Scholar 

  40. Robbins BL, Poston PA, Neal EF, et al. Simultaneous measurement of intracellular triphosphate metabolites of zidovudine, lamivudine and abacavir (carbovir) in human peripheral blood mononuclear cells by combined anion exchange solid phase extraction and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007 May 1; 850(1–2): 310–7

    PubMed  CAS  Google Scholar 

  41. Becher F, Schlemmer D, Pruvost A, et al. Development of a direct assay for measuring intracellular AZT triphosphate in humans peripheral blood mononuclear cells. Anal Chem 2002 Aug 15; 74(16): 4220–7

    Article  PubMed  CAS  Google Scholar 

  42. Pruvost A, Théodoro F, Agrofoglio L, et al. Specificity enhancement with LC-positive ESI-MS/MS for the measurement of nucleotides: application to the quantitative determination of carbovir triphosphate, lamivudine triphosphate and tenofovir diphosphate in human peripheral blood mononuclear cells. J Mass Spectrom 2008 Feb; 43(2): 224–33

    Article  PubMed  CAS  Google Scholar 

  43. King T, Bushman L, Anderson PL, et al. Quantitation of zidovudine triphosphate concentrations from human peripheral blood mononuclear cells by anion exchange solid phase extraction and liquid chromatographytandem mass spectroscopy: an indirect quantitation methodology. J Chromatogr B Analyt Technol Biomed Life Sci 2006 Feb 2; 831(1–2): 248–57

    PubMed  CAS  Google Scholar 

  44. Compain S, Durand-Gasselin L, Grassi J, et al. Improved method to quantify intracellular zidovudine mono- and triphosphate in peripheral blood mononuclear cells by liquid chromatography-tandem mass spectrometry. J Mass Spectrom 2007 Mar; 42(3): 389–404

    Article  PubMed  CAS  Google Scholar 

  45. Chambers E, Wagrowski-Diehl DM, Lu Z, et al. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J Chromatogr B Analyt Technol Biomed Life Sci 2007 Jun 1; 852(1–2): 22–34

    PubMed  CAS  Google Scholar 

  46. Becher F, Pruvost A, Gale J, et al. A strategy for liquid chromatography/tandem mass spectrometric assays of intracellular drugs: application to the validation of the triphosphorylated anabolite of antiretrovirals in peripheral blood mononuclear cells. J Mass Spectrom 2003 Aug; 38(8): 879–90

    Article  PubMed  CAS  Google Scholar 

  47. Pelerin H, Compain S, Duval X, et al. Development of an assay method for the detection and quantification of protease and non-nucleoside reverse transcriptase inhibitors in plasma and in peripherical blood mononuclear cells by liquid chromatography coupled with ultraviolet or tandem mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci 2005 May 5; 819(1): 47–57

    Article  PubMed  CAS  Google Scholar 

  48. Jemal M, Rao S, Gatz M, et al. Liquid chromatography-tandem mass spectrometric quantitative determination of the HIV protease inhibitor atazanavir (BMS-232632) in human peripheral blood mononuclear cells (PBMC): practical approaches to PBMC preparation and PBMC assay design for high-throughput analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2003 Oct 5; 795(2): 273–89

    Article  PubMed  CAS  Google Scholar 

  49. Rouzes A, Berthoin K, Xuereb F, et al. Simultaneous determination of the antiretroviral agents: amprenavir, lopinavir, ritonavir, saquinavir and efavirenz in human peripheral blood mononuclear cells by high-performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2004 Dec 25; 813(1–2): 209–16

    PubMed  CAS  Google Scholar 

  50. Ehrhardt M, Mock M, Haefeli WE, et al. Monitoring of lopinavir and ritonavir in peripheral blood mononuclear cells, plasma, and ultrafiltrate using a selective and highly sensitive LC/MS/MS assay. J Chromatogr B Analyt Technol Biomed Life Sci 2007 May 1; 850(1–2): 249–58

    PubMed  CAS  Google Scholar 

  51. Azoulay S, Nevers MC, Creminon C, et al. An enzyme immunoassay for the quantification of plasma and intracellular lopinavir in HIV-infected patients. J Immunol Methods 2004 Dec; 295(1-2): 37–48

    Article  PubMed  CAS  Google Scholar 

  52. Roucairol C, Azoulay S, Nevers MC, et al. Quantitative immunoassay to measure plasma and intracellular atazanavir levels: analysis of drug accumulation in cultured T cells. Antimicrob Agents Chemother 2007 Feb; 51(2): 405–11

    Article  PubMed  CAS  Google Scholar 

  53. Ford J, Khoo SH, Back DJ. The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother 2004 Dec; 54(6): 982–90

    Article  PubMed  CAS  Google Scholar 

  54. Boffito M, Back DJ, Blaschke TF, et al. Protein binding in antiretroviral therapies. AIDS Res Hum Retroviruses 2003 Sep; 19(9): 825–35

    Article  PubMed  CAS  Google Scholar 

  55. Cropp CD, Yee SW, Giacomini KM. Genetic variation in drug transporters in ethnic populations. Clin Pharmacol Ther 2008 Sep; 84(3): 412–6

    Article  PubMed  CAS  Google Scholar 

  56. Minuesa G, Purcet S, Erkizia I, et al. Expression and functionality of antihuman immunodeficiency virus and anticancer drug uptake transporters in immune cells. J Pharmacol Exp Ther 2008 Feb; 324(2): 558–67

    Article  PubMed  CAS  Google Scholar 

  57. Kock K, Grube M, Jedlitschky G, et al. Expression of adenosine triphosphatebinding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet 2007; 46(6): 449–70

    Article  PubMed  Google Scholar 

  58. Pan G, Giri N, Elmquist WF. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos 2007 Jul; 35(7): 1165–73

    Article  PubMed  CAS  Google Scholar 

  59. Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 2007 Feb; 59(2): 238–45

    Article  PubMed  CAS  Google Scholar 

  60. St-Pierre MV, Ugele B, Gambling L, et al. Mechanisms of drug transfer across the human placenta: a workshop report. Placenta 2002 Apr; 23 Suppl. A: S159–64

    Article  PubMed  Google Scholar 

  61. Varatharajan L, Thomas SA. The transport of anti-HIV drugs across blood-CNS interfaces: summary of current knowledge and recommendations for further research. Antiviral Res 2009 May; 82(2): A99–109

    Article  PubMed  CAS  Google Scholar 

  62. Giraud C, Manceau S, Declèves X, et al. Influence of development, HIV infection, and antiretroviral therapies on the gene expression profiles of ABC transporters in human lymphocytes. J Clin Pharmacol. Epub 2009 Oct 16

  63. Pastor-Anglada M, Cano-Soldado P, Molina-Arcas M, et al. Cell entry and export of nucleoside analogues. Virus Res 2005 Feb; 107(2): 151–64

    Article  PubMed  CAS  Google Scholar 

  64. Hoggard PG, Back DJ. Intracellular pharmacology of nucleoside analogues and protease inhibitors: role of transporter molecules. Curr Opin Infect Dis 2002 Feb; 15(1): 3–8

    Article  PubMed  CAS  Google Scholar 

  65. Strazielle N, Belin MF, Ghersi-Egea JF. Choroid plexus controls brain availability of anti-HIV nucleoside analogs via pharmacologically inhibitable organic anion transporters. Aids 2003 Jul 4; 17(10): 1473–85

    Article  PubMed  CAS  Google Scholar 

  66. Izzedine H, Hulot JS, Villard E, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis 2006 Dec 1; 194(11): 1481–91

    Article  PubMed  CAS  Google Scholar 

  67. Anderson PL, Zheng JH, King T, et al. Concentrations of zidovudine- and lamivudine-triphosphate according to cell type in HIV-seronegative adults. Aids 2007 Sep 12; 21(14): 1849–54

    Article  PubMed  CAS  Google Scholar 

  68. Fletcher C, King T, Bushman L, et al. Compartmental kinetics of intracellular tenofovir [abstract no. 754]. 15th Conference on Retroviruses and Opportunistic Infections; 2008 Feb 3–6; Boston (MA)

    Google Scholar 

  69. Arner ES, Valentin A, Eriksson S. Thymidine and 3′-azido-3′-deoxythymidine metabolism in human peripheral blood lymphocytes and monocyte-derived macrophages: a study of both anabolic and catabolic pathways. J Biol Chem 1992 Jun 5; 267(16): 10968–75

    PubMed  CAS  Google Scholar 

  70. Gavegnano C, Fromentin E, Schinazi RF. Lower levels of nucleoside analog triphosphates in primary human macrophages compared to human lymphocytes could impair potency of antiretroviral drugs in human viral reservoirs [abstract no. 70] HIV Dart 2008; 2008 Dec 9–12; Puerto Rico [online]. Available from URL: http://www.ihlpress.com/pdf%20files/AbstractBook_HIVDART2008_121708.pdf [Accessed 2009 Nov 23]

  71. Perno CF, Svicher V, Schols D, et al. Therapeutic strategies towards HIV-1 infection in macrophages. Antiviral Res 2006 Sep; 71(2–3): 293–300

    Article  PubMed  CAS  Google Scholar 

  72. Stormer E, von Moltke LL, Perloff MD, et al. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res 2002 Jul; 19(7): 1038–45

    Article  PubMed  Google Scholar 

  73. Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 2006 Nov; 112(2): 457–73

    Article  PubMed  CAS  Google Scholar 

  74. Anderson PL, Lamba J, Aquilante CL, et al. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr 2006 Aug 1; 42(4): 441–9

    Article  PubMed  CAS  Google Scholar 

  75. Meaden ER, Hoggard PG, Newton P, et al. P-glycoprotein and MRP1 expression and reduced ritonavir and saquinavir accumulation in HIV-infected individuals. J Antimicrob Chemother 2002 Oct; 50(4): 583–8

    Article  PubMed  CAS  Google Scholar 

  76. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005 Sep; 78(3): 260–77

    Article  PubMed  CAS  Google Scholar 

  77. Telenti A, Zanger UM. Pharmacogenetics of anti-HIV drugs. Annu Rev Pharmacol Toxicol 2008; 48: 227–56

    Article  PubMed  CAS  Google Scholar 

  78. La Porte CJ, Li Y, Beique L, et al. The effect of ABCB1 polymorphism on the pharmacokinetics of saquinavir alone and in combination with ritonavir. Clin Pharmacol Ther 2007 Oct; 82(4): 389–95

    Article  PubMed  CAS  Google Scholar 

  79. Saitoh A, Singh KK, Powell CA, et al. An MDR1-3435 variant is associated with higher plasma nelfinavir levels and more rapid virologic response in HIV-1 infected children. Aids 2005 Mar 4; 19(4): 371–80

    Article  PubMed  CAS  Google Scholar 

  80. Ford J, Cornforth D, Hoggard PG, et al. Intracellular and plasma pharmacokinetics of nelfinavir and M8 in HIV-infected patients: relationship with P-glycoprotein expression. Antivir Ther 2004 Feb; 9(1): 77–84

    PubMed  CAS  Google Scholar 

  81. Chaillou S, Durant J, Garraffo R, et al. Intracellular concentration of protease inhibitors in HIV-1-infected patients: correlation with MDR-1 gene expression and low dose of ritonavir. HIV Clin Trials 2002 Nov–Dec; 3(6): 493–501

    Article  PubMed  CAS  Google Scholar 

  82. Kiser JJ, Aquilante CL, Anderson PL, et al. Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr 2008 Mar 1; 47(3): 298–303

    Article  PubMed  CAS  Google Scholar 

  83. Durand-Gasselin L, Pruvost A, Dehee A, et al. High levels of zidovudine (AZT) and its intracellular phosphate metabolites in AZT- and AZT-lamivudine-treated newborns of human immunodeficiency virus-infected mothers. Antimicrob Agents Chemother 2008 Jul; 52(7): 2555–63

    Article  PubMed  CAS  Google Scholar 

  84. Dumond JB, Reddy YS, Troiani L, et al. Differential extracellular and intracellular concentrations of zidovudine and lamivudine in semen and plasma of HIV-1-infected men. J Acquir Immune Defic Syndr 2008 Jun 1; 48(2): 156–62

    Article  PubMed  CAS  Google Scholar 

  85. Moore JD, Acosta EP, Johnson VA, et al. Intracellular nucleoside triphosphate concentrations in HIV-infected patients on dual nucleoside reverse transcriptase inhibitor therapy. Antivir Ther 2007; 12(6): 981–6

    PubMed  CAS  Google Scholar 

  86. Flynn PM, Rodman J, Lindsey JC, et al. Intracellular pharmacokinetics of once versus twice daily zidovudine and lamivudine in adolescents. Antimicrob Agents Chemother 2007 Oct; 51(10): 3516–22

    Article  PubMed  CAS  Google Scholar 

  87. Aweeka FT, Rosenkranz SL, Segal Y, et al. The impact of sex and contraceptive therapy on the plasma and intracellular pharmacokinetics of zidovudine. Aids 2006 Sep 11; 20(14): 1833–41

    Article  PubMed  CAS  Google Scholar 

  88. Hoggard PG, Lloyd J, Khoo SH, et al. Zidovudine phosphorylation determined sequentially over 12 months in human immunodeficiency virusinfected patients with or without previous exposure to antiretroviral agents. Antimicrob Agents Chemother 2001 Mar; 45(3): 976–80

    Article  PubMed  CAS  Google Scholar 

  89. Fletcher CV, Kawle SP, Kakuda TN, et al. Zidovudine triphosphate and lamivudine triphosphate concentration-response relationships in HIV-infected persons. Aids 2000 Sep 29; 14(14): 2137–44

    Article  PubMed  CAS  Google Scholar 

  90. Rodman JH, Flynn PM, Robbins B, et al. Systemic pharmacokinetics and cellular pharmacology of zidovudine in human immunodeficiency virus type 1-infected women and newborn infants. J Infect Dis 1999 Dec; 180(6): 1844–50

    Article  PubMed  CAS  Google Scholar 

  91. Barry MG, Khoo SH, Veal GJ, et al. The effect of zidovudine dose on the formation of intracellular phosphorylated metabolites. AIDS 1996 Oct; 10(12): 1361–7

    Article  PubMed  CAS  Google Scholar 

  92. Pruvost A, Negredo E, Benech H, et al. Measurement of intracellular didanosine and tenofovir phosphorylated metabolites and possible interaction of the two drugs in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2005 May; 49(5): 1907–14

    Article  PubMed  CAS  Google Scholar 

  93. Pruvost A, Negredo E, Théodoro F, et al. Pilot pharmacokinetic study of human immunodeficiency virus-infected patients receiving tenofovir disoproxil fumarate (TDF): investigation of systemic and intracellular interactions between TDF and abacavir, lamivudine, or lopinavir-ritonavir. Antimicrob Agents Chemother 2009 May; 53(5): 1937–43

    Article  PubMed  CAS  Google Scholar 

  94. Hawkins T, Veikley W, St Claire III RL, et al. Intracellular pharmacokinetics of tenofovir diphosphate, carbovir triphosphate, and lamivudine triphosphate in patients receiving triple-nucleoside regimens. J Acquir Immune Defic Syndr 2005 Aug 1; 39(4): 406–11

    Article  PubMed  CAS  Google Scholar 

  95. Moyle G, Boffito M, Fletcher C, et al. Steady-state pharmacokinetics of abacavir in plasma and intracellular carbovir triphosphate following administration of abacavir at 600 milligrams once daily and 300 milligrams twice daily in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 2009 Apr; 53(4): 1532–8

    Article  PubMed  CAS  Google Scholar 

  96. Sankatsing SU, Hoggard PG, Huitema AD, et al. Effect of mycophenolate mofetil on the pharmacokinetics of antiretroviral drugs and on intracellular nucleoside triphosphate pools. Clin Pharmacokinet 2004; 43(12): 823–32

    Article  PubMed  CAS  Google Scholar 

  97. Harris M, Back D, Kewn S, et al. Intracellular carbovir triphosphate levels in patients taking abacavir once a day. Aids 2002 May 24; 16(8): 1196–7

    Article  PubMed  Google Scholar 

  98. Kiser JJ, Fletcher CV, Flynn PM, et al. Pharmacokinetics of antiretroviral regimens containing tenofovir disoproxil fumarate and atazanavir-ritonavir in adolescents and young adults with human immunodeficiency virus infection. Antimicrob Agents Chemother 2008 Feb; 52(2): 631–7

    Article  PubMed  CAS  Google Scholar 

  99. Wang LH, Begley J, St Claire III RL, et al. Pharmacokinetic and pharmacodynamic characteristics of emtricitabine support its once daily dosing for the treatment of HIV infection. AIDS Res Hum Retroviruses 2004 Nov; 20(11): 1173–82

    Article  PubMed  CAS  Google Scholar 

  100. Djabarouti S, Breilh D, Pellegrin I, et al. Intracellular and plasma efavirenz concentrations in HIV-infected patients switching from successful protease inhibitor-based highly active antiretroviral therapy (HAART) to efavirenzbased HAART (SUSTIPHAR Study). J Antimicrob Chemother 2006 Nov; 58(5): 1090–3

    Article  PubMed  CAS  Google Scholar 

  101. Rotger M, Colombo S, Furrer H, et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 2005 Jan; 15(1): 1–5

    Article  PubMed  CAS  Google Scholar 

  102. Ford J, Boffito M, Wildfire A, et al. Intracellular and plasma pharmacokinetics of saquinavir-ritonavir, administered at 1,600/100 milligrams once daily in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2004 Jul; 48(7): 2388–93

    Article  PubMed  CAS  Google Scholar 

  103. Lamotte C, Landman R, Peytavin G, et al. Once-daily dosing of saquinavir soft-gel capsules and ritonavir combination in HIV-1-infected patients (IMEA015 Study). Antivir Ther 2004 Apr; 9(2): 247–56

    PubMed  CAS  Google Scholar 

  104. Crommentuyn KM, Mulder JW, Mairuhu AT, et al. The plasma and intracellular steady-state pharmacokinetics of lopinavir/ritonavir in HIV-1-infected patients. Antivir Ther 2004 Oct; 9(5): 779–85

    PubMed  CAS  Google Scholar 

  105. Breilh D, Pellegrin I, Rouzes A, et al. Virological, intracellular and plasma pharmacological parameters predicting response to lopinavir/ritonavir (KALEPHAR Study). Aids 2004 Jun 18; 18(9): 1305–10

    Article  PubMed  CAS  Google Scholar 

  106. Havlir DV, Tierney C, Friedland GH, et al. In vivo antagonism with zidovudine plus stavudine combination therapy. J Infect Dis 2000 Jul; 182(1): 321–5

    Article  PubMed  CAS  Google Scholar 

  107. Hoggard P, Khoo S, Barry M, et al. Intracellular metabolism of zidovudine and stavudine in combination. J Infect Dis 1996 Sep; 174(3): 671–2

    Article  PubMed  CAS  Google Scholar 

  108. Hoggard PG, Kewn S, Barry MG, et al. Effects of drugs on 2′,3′-dideoxy-2′,3′-didehydrothymidine phosphorylation in vitro. Antimicrob Agents Chemother 1997 Jun; 41(6): 1231–6

    PubMed  CAS  Google Scholar 

  109. Gallant JE, Rodriguez AE, Weinberg WG, et al. Early virologic nonresponse to tenofovir, abacavir, and lamivudine in HIV-infected antiretroviral-naive subjects. J Infect Dis 2005 Dec 1; 192(11): 1921–30

    Article  PubMed  CAS  Google Scholar 

  110. Kiser JJ, Carten ML, Aquilante CL, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther 2008 Feb; 83(2): 265–72

    Article  PubMed  CAS  Google Scholar 

  111. Hoggard PG, Sales SD, Phiboonbanakit D, et al. Influence of prior exposure to zidovudine on stavudine phosphorylation in vivo and ex vivo. Antimicrob Agents Chemother 2001 Feb; 45(2): 577–82

    Article  PubMed  CAS  Google Scholar 

  112. Katlama C, Valantin MA, Matheron S, et al. Efficacy and tolerability of stavudine plus lamivudine in treatment-naive and treatment-experienced patients with HIV-1 infection. Ann Intern Med 1998 Oct 1; 129(7): 525–31

    PubMed  CAS  Google Scholar 

  113. Murphy MD, O’Hearn M, Chou S. Fatal lactic acidosis and acute renal failure after addition of tenofovir to an antiretroviral regimen containing didanosine. Clin Infect Dis 2003 Apr 15; 36(8): 1082–5

    Article  PubMed  Google Scholar 

  114. Masia M, Gutierrez F, Padilla S, et al. Didanosine-associated toxicity: a predictable complication of therapy with tenofovir and didanosine?. J Acquir Immune Defic Syndr 2004 Apr 1; 35_(4): 427–8

    Article  Google Scholar 

  115. Karrer U, Ledergerber B, Furrer H, et al. Dose-dependent influence of didanosine on immune recovery in HIV-infected patients treated with tenofovir. Aids 2005 Nov 18; 19(17): 1987–94

    Article  PubMed  CAS  Google Scholar 

  116. Barreiro P, Soriano V. Suboptimal CD4 gains in HIV-infected patients receiving didanosine plus tenofovir. J Antimicrob Chemother 2006 May; 57(5): 806–9

    Article  PubMed  CAS  Google Scholar 

  117. Perez-Elias MJ, Moreno S, Gutierrez C, et al. High virological failure rate in HIV patients after switching to a regimen with two nucleoside reverse transcriptase inhibitors plus tenofovir. Aids 2005 Apr 29; 19(7): 695–8

    Article  PubMed  CAS  Google Scholar 

  118. Tung MY, Mandalia S, Bower M, et al. The durability of virological success of tenofovir and didanosine dosed at either 400 or 250 mg once daily. HIV Med 2005 May; 6(3): 151–4

    Article  PubMed  CAS  Google Scholar 

  119. Holdich T, Shiveley LA, Sawyer J. Effect of lamivudine on the plasma and intracellular pharmacokinetics of apricitabine, a novel nucleoside reverse transcriptase inhibitor, in healthy volunteers. Antimicrob Agents Chemother 2007 Aug; 51(8): 2943–7

    Article  PubMed  CAS  Google Scholar 

  120. Frank I, Bosch RJ, Fiscus S, et al. Activity, safety, and immunological effects of hydroxyurea added to didanosine in antiretroviral-naive and experienced HIV type 1-infected subjects: a randomized, placebo-controlled trial, ACTG 307. AIDS Res Hum Retroviruses 2004 Sep; 20(9): 916–26

    Article  PubMed  CAS  Google Scholar 

  121. Bakshi RP, Hamzeh F, Frank I, et al. Effect of hydroxyurea and dideoxyinosine on intracellular 3′-deoxyadenosine-5′-triphosphate concentrations in HIV-infected patients. AIDS Res Hum Retroviruses 2007 Nov; 23(11): 1360–5

    Article  PubMed  CAS  Google Scholar 

  122. Margolis D, Heredia A, Gaywee J, et al. Abacavir and mycophenolic acid, an inhibitor of inosine monophosphate dehydrogenase, have profound and synergistic anti-HIV activity. J Acquir Immune Defic Syndr 1999 Aug 15; 21(5): 362–70

    PubMed  CAS  Google Scholar 

  123. Dixit NM, Perelson AS. The metabolism, pharmacokinetics and mechanisms of antiviral activity of ribavirin against hepatitis C virus. Cell Mol Life Sci 2006 Apr; 63(7–8): 832–42

    Article  PubMed  CAS  Google Scholar 

  124. Rodriguez-Torres M, Torriani FJ, Soriano V, et al. Effect of ribavirin on intracellular and plasma pharmacokinetics of nucleoside reverse transcriptase inhibitors in patients with human immunodeficiency virus-hepatitis C virus coinfection: results of a randomized clinical study. Antimicrob Agents Chemother 2005 Oct; 49(10): 3997–4008

    Article  PubMed  CAS  Google Scholar 

  125. Aweeka FT, Kang M, Yu JY, et al. Pharmacokinetic evaluation of the effects of ribavirin on zidovudine triphosphate formation: ACTG 5092s Study Team. HIV Med 2007 Jul; 8(5): 288–94

    Article  PubMed  CAS  Google Scholar 

  126. Sim SM, Hoggard PG, Sales SD, et al. Effect of ribavirin on zidovudine efficacy and toxicity in vitro: a concentration-dependent interaction. AIDS Res Hum Retroviruses 1998 Dec 20; 14(18): 1661–7

    Article  PubMed  CAS  Google Scholar 

  127. Vogt MW, Hartshorn KL, Furman PA, et al. Ribavirin antagonizes the effect of azidothymidine on HIV replication. Science 1987 Mar 13; 235(4794): 1376–9

    Article  PubMed  CAS  Google Scholar 

  128. Balzarini J, Lee CK, Herdewijn P, et al. Mechanism of the potentiating effect of ribavirin on the activity of 2′,3′-dideoxyinosine against human immunodeficiency virus. J Biol Chem 1991 Nov 15; 266(32): 21509–14

    PubMed  CAS  Google Scholar 

  129. Bani-Sadr F, Carrat F, Pol S, et al. Risk factors for symptomatic mitochondrial toxicity in HIV/hepatitis C virus-coinfected patients during interferon plus ribavirin-based therapy. J Acquir Immune Defic Syndr 2005 Sep 1; 40(1): 47–52

    Article  PubMed  CAS  Google Scholar 

  130. Moreno A, Quereda C, Moreno L, et al. High rate of didanosine-related mitochondrial toxicity in HIV/HCV-coinfected patients receiving ribavirin. Antivir Ther 2004 Feb; 9(1): 133–8

    PubMed  CAS  Google Scholar 

  131. Ford J, Boffito M, Maitland D, et al. Influence of atazanavir 200mg on the intracellular and plasma pharmacokinetics of saquinavir and ritonavir 1600/100 mg administered once daily in HIV-infected patients. J Antimicrob Chemother 2006 Nov; 58(5): 1009–16

    Article  PubMed  CAS  Google Scholar 

  132. DiCenzo R, Frerichs V, Larppanichpoonphol P, et al. Effect of quercetin on the plasma and intracellular concentrations of saquinavir in healthy adults. Pharmacotherapy 2006 Sep; 26(9): 1255–61

    Article  PubMed  CAS  Google Scholar 

  133. Khoo SH, Hoggard PG, Williams I, et al. Intracellular accumulation of human immunodeficiency virus protease inhibitors. Antimicrob Agents Chemother 2002 Oct; 46(10): 3228–35

    Article  PubMed  CAS  Google Scholar 

  134. Vispo E, Barreiro P, Pineda JA, et al. Low response to pegylated interferon plus ribavirin in HIV-infected patients with chronic hepatitis C treated with abacavir. Antivir Ther 2008; 13(3): 429–37

    PubMed  CAS  Google Scholar 

  135. Stretcher BN, Pesce AJ, Frame PT, et al. Correlates of zidovudine phosphorylation with markers of HIV disease progression and drug toxicity. Aids 1994 Jun; 8(6): 763–9

    Article  PubMed  CAS  Google Scholar 

  136. Back DJ, Burger DM, Flexner CW, et al. The pharmacology of antiretroviral nucleoside and nucleotide reverse transcriptase inhibitors: implications for once-daily dosing. J Acquir Immune Defic Syndr 2005 Aug 1; 39 Suppl. 1: S1–23, quiz S24-5

    Article  PubMed  CAS  Google Scholar 

  137. Fletcher CV, Anderson PL, Kakuda TN, et al. Concentration-controlled compared with conventional antiretroviral therapy for HIV infection. Aids 2002 Mar 8; 16(4): 551–60

    Article  PubMed  Google Scholar 

  138. Drechsler H, Powderly WG. Switching effective antiretroviral therapy: a review. Clin Infect Dis 2002 Nov 15; 35(10): 1219–30

    Article  PubMed  CAS  Google Scholar 

  139. Kelly M. Induction-maintenance antiretroviral strategies to reduce long-term toxicity. J HIV Ther 2003 Feb; 8(1): 11–4

    PubMed  Google Scholar 

  140. Maggiolo F, Airoldi M, Kleinloog HD, et al. Effect of adherence to HAART on virologic outcome and on the selection of resistance-conferring mutations in NNRTI- or PI-treated patients. HIV Clin Trials 2007 Sep–Oct; 8(5): 282–92

    Article  PubMed  Google Scholar 

  141. Harrigan PR, Hogg RS, Dong WW, et al. Predictors of HIV drug-resistance mutations in a large antiretroviral-naive cohort initiating triple antiretroviral therapy. J Infect Dis 2005 Feb 1; 191(3): 339–47

    Article  PubMed  CAS  Google Scholar 

  142. Braithwaite RS, Shechter S, Roberts MS, et al. Explaining variability in the relationship between antiretroviral adherence and HIV mutation accumulation. J Antimicrob Chemother 2006 Nov; 58(5): 1036–43

    Article  PubMed  CAS  Google Scholar 

  143. Calza L, Manfredi R, Chiodo F. Dyslipidaemia associated with antiretroviral therapy in HIV-infected patients. J Antimicrob Chemother 2004 Jan; 53(1): 10–4

    Article  PubMed  CAS  Google Scholar 

  144. Bodasing N, Fox R. HIV-associated lipodystrophy syndrome: description and pathogenesis. J Infect 2003 Apr; 46(3): 149–54

    Article  PubMed  CAS  Google Scholar 

  145. Perez-Molina JA, Domingo P, Martinez E, et al. The role of efavirenz compared with protease inhibitors in the body fat changes associated with highly active antiretroviral therapy. J Antimicrob Chemother 2008 Aug; 62(2): 234–45

    Article  PubMed  CAS  Google Scholar 

  146. Mallewa JE, Wilkins E, Vilar J, et al. HIV-associated lipodystrophy: a review of underlying mechanisms and therapeutic options. J Antimicrob Chemother 2008 Oct; 62(4): 648–60

    Article  PubMed  CAS  Google Scholar 

  147. Nolan D, Mallal S. Complications associated with NRTI therapy: update on clinical features and possible pathogenic mechanisms. Antivir Ther 2004 Dec; 9(6): 849–63

    PubMed  CAS  Google Scholar 

  148. Dragovic G, Jevtovic D. Nucleoside reverse transcriptase inhibitor usage and the incidence of peripheral neuropathy in HIV/AIDS patients. Antivir Chem Chemother 2003 Sep; 14(5): 281–4

    PubMed  CAS  Google Scholar 

  149. Sinnwell TM, Sivakumar K, Soueidan S, et al. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 3 1P in vivo magnetic resonance spectroscopy. J Clin Invest 1995 Jul; 96(1): 126–31

    Article  PubMed  CAS  Google Scholar 

  150. Yarchoan R, Pluda JM, Thomas RV, et al. Long-term toxicity/activity profile of 2′,3′-dideoxyinosine in AIDS or AIDS-related complex. Lancet 1990 Sep 1; 336(8714): 526–9

    Article  PubMed  CAS  Google Scholar 

  151. Brogan KL, Zell SC. Hematologic toxicity of zidovudine in HIV-infected patients. Am Fam Physician 1990 May; 41(5): 1521–8

    PubMed  CAS  Google Scholar 

  152. Gupta SK. Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. AIDS Patient Care STDS 2008 Feb; 22(2): 99–103

    Article  PubMed  Google Scholar 

  153. Clifford DB, Evans S, Yang Y, et al. Impact of efavirenz on neuropsychological performance and symptoms in HIV-infected individuals. Ann Intern Med 2005 Nov 15; 143(10): 714–21

    PubMed  CAS  Google Scholar 

  154. Martin-Carbonero L, Nunez M, Gonzalez-Lahoz J, et al. Incidence of liver injury after beginning antiretroviral therapy with efavirenz or nevirapine. HIV Clin Trials 2003 Mar–Apr; 4(2): 115–20

    Article  PubMed  Google Scholar 

  155. Patel SM, Johnson S, Belknap SM, et al. Serious adverse cutaneous and hepatic toxicities associated with nevirapine use by non-HIV-infected individuals. J Acquir Immune Defic Syndr 2004 Feb 1; 35(2): 120–5

    Article  PubMed  CAS  Google Scholar 

  156. Knobel H, Guelar A, Montero M, et al. Risk of side effects associated with the use of nevirapine in treatment-naive patients, with respect to gender and CD4 cell count. HIV Med 2008 Jan; 9(1): 14–8

    Article  PubMed  CAS  Google Scholar 

  157. Carr A, Samaras K, Chisholm DJ, et al. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 1998 Jun 20; 351(9119): 1881–3

    Article  PubMed  CAS  Google Scholar 

  158. Andre P, Groettrup M, Klenerman P, et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci U S A 1998 Oct 27; 95(22): 13120–4

    Article  PubMed  CAS  Google Scholar 

  159. Sakai J, Rawson RB. The sterol regulatory element-binding protein pathway: control of lipid homeostasis through regulated intracellular transport. Curr Opin Lipidol 2001 Jun; 12(3): 261–6

    Article  PubMed  CAS  Google Scholar 

  160. Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem 2000 Jul 7; 275(27): 20251–4

    Article  PubMed  CAS  Google Scholar 

  161. Moyle G. Mechanisms of HIV and nucleoside reverse transcriptase inhibitor injury to mitochondria. Antivir Ther 2005; 10 Suppl. 2: M47–52

    PubMed  CAS  Google Scholar 

  162. Capparelli EV, Englund JA, Connor JD, et al. Population pharmacokinetics and pharmacodynamics of zidovudine in HIV-infected infants and children. J Clin Pharmacol 2003 Feb; 43(2): 133–40

    Article  PubMed  CAS  Google Scholar 

  163. Mentré F, Escolano S, Diquet B, et al. Clinical pharmacokinetics of zidovudine: inter and intraindividual variability and relationship to long term efficacy and toxicity. Eur J Clin Pharmacol 1993; 45(5): 397–407

    Article  PubMed  Google Scholar 

  164. Sales SD, Hoggard PG, Sunderland D, et al. Zidovudine phosphorylation and mitochondrial toxicity in vitro. Toxicol Appl Pharmacol 2001 Nov 15; 177(1): 54–8

    Article  PubMed  CAS  Google Scholar 

  165. Csajka C, Marzolini C, Fattinger K, et al. Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharmacol Ther 2003 Jan; 73(1): 20–30

    Article  PubMed  CAS  Google Scholar 

  166. Gutierrez F, Navarro A, Padilla S, et al. Prediction of neuropsychiatric adverse events associated with long-term efavirenz therapy, using plasma drug level monitoring. Clin Infect Dis 2005 Dec 1; 41(11): 1648–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to France Mentré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazzoli, C., Jullien, V., Tiec, C.L. et al. Intracellular Pharmacokinetics of Antiretroviral Drugs in HIV-Infected Patients, and their Correlation with Drug Action. Clin Pharmacokinet 49, 17–45 (2010). https://doi.org/10.2165/11318110-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11318110-000000000-00000

Keywords

Navigation