Skip to main content
Log in

The Role of Phosphodiesterases in Schizophrenia

Therapeutic Implications

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Recent studies have suggested that currently available antipsychotic medications, while useful in treating some aspects of schizophrenia, still possess considerable limitations. Improving the treatment of negative symptoms and cognitive dysfunction, and decreasing adverse effects remain significant challenges. Many new drug strategies have been proposed in recent years and increasing evidence suggests that members of the phosphodiesterase (PDE) gene family may play a role in the aetiology or treatment of schizophrenia. PDEs are key enzymes responsible for the degradation of the second messengers cAMP (3′,5′-cyclic adenosine monophosphate) and cGMP (3′,5′-cyclic guanosine monophosphate). Mammalian PDEs are composed of 21 genes and are categorized into 11 families based on sequence homology, enzymatic properties and sensitivity to pharmacological inhibitors. Representatives from most families have been identified in the brain by the presence of protein or RNA, and numerous studies suggest that PDEs play an important role in the regulation of intracellular signalling downstream of receptor activation in neurons. Insights into the multiple brain processes to which PDEs contribute are emerging from the phenotype of genetically engineered mice that lack activity of specific PDEs (knockout mice), as well as from in vitro and in vivo studies with PDE inhibitors.

This article provides a brief overview of recent studies implicating PDE inhibition, focusing on PDE4 and PDE10, as targets for treating the positive, negative or cognitive symptoms associated with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I.

Similar content being viewed by others

References

  1. Tamminga CA, Holcomb HH. Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 2005; 1: 27–39

    Article  CAS  Google Scholar 

  2. Gray JA, Roth BL. The pipeline and future of drug development in schizophrenia. Mol Psychiatry 2007; 10: 904–22

    Article  CAS  Google Scholar 

  3. Lieberman JA, Stroup TS, McEvoy JP, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New Engl J Med 2005; 353: 1209–23

    Article  PubMed  CAS  Google Scholar 

  4. Beavo JA, Houslay MD, Francis SH. Cyclic nucleotide phosphodiesterase superfamily. In: Beavo JA, Francis SH, Houslay MD, editors. Cyclic nucleotide phosphodiesterases in health and disease. Boca Raton (FL): CRC Press, 2007: 3–17

    Google Scholar 

  5. Lungier C. Cyclic nucleotide phosphodiesterase (PDE) super-family: a new target for the development of specific therapeutic agents. Pharmacol Ther 2006; 109: 366–98

    Article  CAS  Google Scholar 

  6. Conti M, Richter W, Mehats C, et al. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 2003; 8: 5493–6

    Article  Google Scholar 

  7. Houslay MD, Schafer P, Zhang KY. Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 2005; 10: 1503–19

    Article  PubMed  CAS  Google Scholar 

  8. Lobban M, Shakur Y, Beattie J, et al. Identification of two splice variant forms of type-IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brain: selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem J 1994; 304: 399–406

    PubMed  CAS  Google Scholar 

  9. McPhee I, Pooley L, Lobban M, et al. Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family. Biochem J 1995; 310: 965–74

    PubMed  CAS  Google Scholar 

  10. Iona S, Cuomo M, Bushnik T, et al. Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol Pharmacol 1998; 53: 23–32

    PubMed  CAS  Google Scholar 

  11. Cherry JA, Davis RL. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol 1999; 407: 287–301

    Article  PubMed  CAS  Google Scholar 

  12. Perez-Torres S, Miro X, Palacios JM, et al. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography: comparison with monkey and rat brain. J Chem Neuroanat 2000; 20: 349–74

    Article  PubMed  CAS  Google Scholar 

  13. Graybiel AM. The basal ganglia. Curr Biol 2000; 10: R509–12

    Article  PubMed  CAS  Google Scholar 

  14. Engels P, Abdel’Al S, Hulley P, et al. Brain distribution of four rat homologues of the Drosophila dunce cAMP phosphodiesterase. J Neurosci Res 1995; 41: 169–78

    Article  PubMed  CAS  Google Scholar 

  15. Wachtel H. Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′,5′-monophosphate phosphodiesterase inhibitors. Neuropharmacology 1983; 22: 267–72

    Article  PubMed  CAS  Google Scholar 

  16. Wachtel H. Species differences in behavioural effects of rolipram and other adenosine cyclic 3H, 5H-monophosphate phosphodiesterase inhibitors. J Neural Transm 1983; 56: 139–52

    Article  PubMed  CAS  Google Scholar 

  17. Schneider HH. Brain cAMP response to phosphodiesterase inhibitors in rats killed by microwave irradiation or decapitation. Biochem Pharmacol 1984; 33: 1690–3

    Article  PubMed  CAS  Google Scholar 

  18. MacKenzie SJ, Houslay M. Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J 2000; 347: 571–8

    Article  PubMed  CAS  Google Scholar 

  19. Robichaud A, Stamatiou PB, Jin SL, et al. Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 2002; 110: 1045–52

    PubMed  CAS  Google Scholar 

  20. Jin S-LC, Richard FJ, Kuo WP, et al. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci U S A 1999; 96: 11998–2003

    Article  PubMed  CAS  Google Scholar 

  21. Jin SL, Conti M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci U S A 2002; 99: 7628–33

    Article  PubMed  CAS  Google Scholar 

  22. Jin SL, Latour AM, Conti M. Generation of PDE4 knockout mice by gene targeting. Methods Mol Biol 2005; 307: 191–210

    PubMed  CAS  Google Scholar 

  23. Siuciak JA, Chapin DS, McCarthy SA, et al. Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology 2007; 192: 415–24

    Article  PubMed  CAS  Google Scholar 

  24. Siuciak JA, McCarthy SA, Chapin DS, et al. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 2008; 197: 115–26

    Article  CAS  Google Scholar 

  25. Zhang HT, Huang Y, Jin SL, et al. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology 2002; 27: 587–95

    PubMed  CAS  Google Scholar 

  26. Zhang HT, Huang Y, Masood A, et al. Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology 2008; 33: 1611–23

    Article  PubMed  CAS  Google Scholar 

  27. Chapin DS, McCarthy SA, Martin AN, et al. Rolipram, a PDE4 inhibitor, shows efficacy in animal models of antipsychoticlike activity: studies using PDE4B and PDE4D knockout mice [abstract]. Schizophr Bull 2007; 33: 470

    Google Scholar 

  28. Siuciak JA, McCarthy SA, Chapin DS, et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 2006; 51: 374–85

    Article  PubMed  CAS  Google Scholar 

  29. Siuciak JA, McCarthy SA, Chapin DS, et al. Behavioral characterization of mice deficient in the phosphodiesterase-10 (PDE10A) enzyme on a C57/BL6N congenic background. Neuropharmacology 2008; 54: 417–27

    Article  PubMed  CAS  Google Scholar 

  30. Reed TM, Browning JE, Blough RI, et al. Genomic structure and chromosome location of the murine PDE1B phosphodiesterase gene. Mamm Genome 1998; 9: 571–6

    Article  PubMed  CAS  Google Scholar 

  31. Ehrman LA, Williams MT, Schaefer TL, et al. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav 2006; 5: 540–51

    Article  PubMed  CAS  Google Scholar 

  32. Siuciak JA, McCarthy SA, Chapin DS, et al. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 2007; 53: 113–24

    Article  PubMed  CAS  Google Scholar 

  33. Millar JK, Pickard BS, Mackie S, et al. DISCI and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 2005; 31: 1187–91

    Article  CAS  Google Scholar 

  34. Pickard BS, Thomson PA, Christoforou A, et al. The PDE4B gene confers sex-specific protection against schizophrenia. Psychiatr Genet 2007; 17: 129–33

    Article  PubMed  Google Scholar 

  35. Clapcote SJ, Lipina TV, Millar JK, et al. Behavioral phenotypes of DISCI missense mutations in mice. Neuron 2007; 54: 387–402

    Article  PubMed  CAS  Google Scholar 

  36. Mori T, Baba J, Ichimaru Y, et al. Effects of rolipram, a selective inhibitor of phosphodiesterase 4, on hyperlocomotion induced by several abused drugs in mice. Jpn J Pharmacol 2000; 83: 113–8

    Article  PubMed  CAS  Google Scholar 

  37. Maxwell CR, Kanes SJ, Abel T, et al. Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 2004; 129: 101–7

    Article  PubMed  CAS  Google Scholar 

  38. Kanes SJ, Tokarczyk J, Siegel SJ, et al. Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 2007; 144: 239–46

    Article  PubMed  CAS  Google Scholar 

  39. Davis JA, Gould TJ. Rolipram attenuates MK-801-induced deficits in latent inhibition. Behav Neurosci 2005; 119: 595–602

    Article  PubMed  CAS  Google Scholar 

  40. Becker A, Grecksch G. Phosphodiesterase inhibitors, are they potential neuroleptic drugs? Behav Brain Res 2008; 186: 155–60

    Article  PubMed  CAS  Google Scholar 

  41. Wadenberg ML, Hicks PB. The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics? Neurosci Biobehav Rev 1999; 23(6): 851–62

    Article  PubMed  CAS  Google Scholar 

  42. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 2003; 160(1): 13–23

    Article  PubMed  Google Scholar 

  43. Pietzcker A, Muller-Oerlinghausen B, Kehr W. Antipsychotic activity of rolipram in schizophrenic patients: pilot study [abstract]. Naunyn Schmiedebergs Arch Pharmacol 1979; 308: R44

    Google Scholar 

  44. Rose GM, Hopper A, De Vivo M, et al. Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 2005; 11: 3329–34

    Article  PubMed  CAS  Google Scholar 

  45. Blokland A, Schreiber R, Prickaerts J. Improving memory: a role for phosphodiesterases. Curr Pharm Des 2006; 12: 2511–23

    Article  PubMed  CAS  Google Scholar 

  46. Bourtchouladze R, Lidge R, Catapano R, et al. A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci U S A 2003; 100: 10518–22

    Article  PubMed  CAS  Google Scholar 

  47. Rutten K, Prickaerts J, Blokland A. Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action. Neurobiol Learn Mem 2006; 85: 132–8

    Article  PubMed  CAS  Google Scholar 

  48. Rutten K, Prickaerts J, Hendrix M, et al. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 2007; 558: 107–12

    Article  PubMed  CAS  Google Scholar 

  49. Rutten K, Lieben C, Smits L, et al. The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology (Berl) 2007; 192: 275–82

    Article  CAS  Google Scholar 

  50. Egawa T, Mishima K, Matsumoto Y, et al. Rolipram and its optical isomers, phosphodiesterase 4 inhibitors, attenuated the scopolamine-induced impairments of learning and memory in rats. Jpn J Pharmacol 1997; 75: 275–81

    Article  PubMed  CAS  Google Scholar 

  51. Imanish T, Sawa A, Ichimaru Y, et al. Ameliorating effects of rolipram on experimentally induced impairments of learning and memory in rodents. Eur J Pharmacol 1997; 321: 273–8

    Article  CAS  Google Scholar 

  52. Ghelardini C, Galeotti N, Gualtieri F, et al. DM235 (sunifiram): a novel nootropic with potential as a cognitive enhancer. Naunyn Schmiedebergs Arch Pharmacol 2002; 365: 419–26

    Article  PubMed  CAS  Google Scholar 

  53. Zhang HT, Huang Y, Suvarna NU, et al. Effects of the novel PDE4 inhibitors MEM1018 and MEM1091 on memory in the radial-arm maze and inhibitory avoidance tests in rats. Psychopharmacology (Berl) 2005; 179: 613–9

    Article  CAS  Google Scholar 

  54. Zhang HT, O’Donnell JM. Effects of rolipram on scopolamine-induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology 2000; 150: 311–6

    Article  PubMed  CAS  Google Scholar 

  55. Zhang HT, Crissman AM, Dorairaj NR, et al. Inhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism. Neuropsychopharmacology 2000; 23: 198–204

    Article  PubMed  CAS  Google Scholar 

  56. Gong B, Vitolo OV, Trinchese F, et al. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 2004; 114(11): 1624–34

    PubMed  CAS  Google Scholar 

  57. Nagakura A, Niimura M, Takeo S. Effects of a phosphodiesterase IV inhibitor rolipram on microsphere embolism-induced defects in memory function and cerebral cyclic AMP signal transduction system in rats. Br J Pharmacol 2002; 135: 1783–93

    Article  PubMed  CAS  Google Scholar 

  58. Barad M, Bourtchouladze R, Winder DG, et al. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci U S A 1998; 95: 15020–5

    Article  PubMed  CAS  Google Scholar 

  59. Nguyen T, Lewis SR, Moschak TM, et al. Cognitive enhancing and antipsychotic effects of phosphodiesterase inhibitors. 2007 Neuroscience Meeting Planner, Society for Neuroscience; 2007 Nov 3–7; San Diego (CA) [online]. Available from URL: http://www.sfn.org/index.cfm?pagename=abstracts_ampublications&section=publications [Accessed 2008 Oct 28]

  60. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999; 20: 201–25

    Article  PubMed  CAS  Google Scholar 

  61. Memory Pharmaceuticals Corp. Memory Pharmaceuticals development pipeline [online]. Available from URL: http://www.memorypharma.com/pipe.html [Accessed 2008 Sep 1]

  62. MK0952 in patients with mild-to-moderate Alzheimer’s disease [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00362024 [Accessed 2008 Sep 8]

  63. Mouri A, Noda Y, Enomoto T, et al. Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 2007; 51(2-4): 173–84

    Article  PubMed  CAS  Google Scholar 

  64. Renau TE. The potential of phosphodiesterase 4 inhibitors for the treatment of depression: opportunities and challenges. Curr Opin Investig Drugs 2004; 5: 34–9

    PubMed  CAS  Google Scholar 

  65. O’Donnell JM, Zhang HT. Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 2004; 25: 158–63

    Article  PubMed  CAS  Google Scholar 

  66. Saccomano NA, Vinick FJ, Koe BK, et al. Calcium-independent phosphodiesterase inhibitors as putative antidepressants: [3-(bicycloalkyloxy)-4-methoxyphenyl]-2-imidazolidinones. J Med Chem 1991;34: 291–8

    Article  PubMed  CAS  Google Scholar 

  67. Itoh T, Tokumura M, Abe K. Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats. Eur J Pharmacol 2004; 498: 135–42

    Article  PubMed  CAS  Google Scholar 

  68. Mizokawa T, Kimura K, Ikoma Y, et al. The effect of a selective phosphodiesterase inhibitor, rolipram, on muricide in olfactory bulbectomized rats. Jpn J Pharmacol 1988; 48: 357–64

    Article  PubMed  CAS  Google Scholar 

  69. O’Donnell JM. Antidepressant-like effects of rolipram and other inhibitors of cyclic adenosine monophosphate phosphodiesterase on behavior maintained by differential reinforcement of low response rate. J Pharmacol Exp Ther 1993; 264: 1168–78

    PubMed  Google Scholar 

  70. Overstreet DH, Double K, Schiller GD. Antidepressant effects of rolipram in a genetic animal model of depression: cholinergic supersensitivity and weight gain. Pharmacol Biochem Behav 1989; 34: 691–6

    Article  PubMed  CAS  Google Scholar 

  71. Bertolino A, Crippa D, di Dio S, et al. Rolipram versus imipramine in inpatients with major, “minor” or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol 1988; 3: 245–53

    Article  PubMed  CAS  Google Scholar 

  72. Fleischhacker WW, Hinterhuber H, Bauer H, et al. A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. Neuropsychobiology 1992; 26: 59–64

    Article  PubMed  CAS  Google Scholar 

  73. Hebenstreit GF, Feilerer K, Fichte K, et al. Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 1989; 22: 156–60

    Article  PubMed  CAS  Google Scholar 

  74. Scott AI, Perini AF, Shering PA, et al. In-patient major depression: is rolipram as effective as amitriptyline? Eur J Clin Pharmacol 1991; 40: 127–9

    Article  PubMed  CAS  Google Scholar 

  75. Zeller E, Stief HJ, Pflug B, et al. Results of a phase II study of the antidepressant effect of rolipram. Pharmacopsychiatry 1984; 17: 188–90

    Article  PubMed  CAS  Google Scholar 

  76. Ye Y, Conti M, Houslay MD, et al. Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase (PDE4) in rat brain. J Neurochem 1997; 69: 2397–404

    Article  PubMed  CAS  Google Scholar 

  77. Takahashi M, Terwilliger R, Lane S, et al. Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. J Neurosci 1999; 19: 610–8

    PubMed  CAS  Google Scholar 

  78. Dlaboga D, Hajjhussein H, O’Donnell JM. Regulation of phosphodiesterase-4 (PDE4) expression in mouse brain by repeated antidepressant treatment: comparison with rolipram. Brain Res 2006; 1096: 104–12

    Article  PubMed  CAS  Google Scholar 

  79. Soderling SH, Bayuga SJ, Beavo JA. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Nat Acad Sci U S A 1999; 96: 7071–6

    Article  CAS  Google Scholar 

  80. Loughney K, Snyder PB, Uher L, et al. Isolation and characterization of PDE10A, a novel human 3′, 5′-cyclic nucleotide phosphodiesterase. Gene 1999; 234: 109–17

    Article  PubMed  CAS  Google Scholar 

  81. Fujishige K, Kotera J, Michibata H, et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 1999; 274: 18438–45

    Article  PubMed  CAS  Google Scholar 

  82. Fujishige K, Kotera J, Omori K. Striatum- and testis-specific phosphodiesterase PDE10A: isolation and characterization of a rat PDE10A. Eur J Biochem 1999; 266: 1118–27

    Article  PubMed  CAS  Google Scholar 

  83. Kotera J, Fujishige K, Yuasa K, et al. Characterization and phosphorylation of PDE10A2, a novel alternative splice variant of human phosphodiesterase that hydrolyzes cAMP and cGMP. Biochem Biophys Res Commun 1999; 261: 551–7

    Article  PubMed  CAS  Google Scholar 

  84. Hu H, McCaw EA, Hebb ALO, et al. Mutant huntintin affects the rat of transcription of striatum-specificisoforms of phosphodiesterase 10A. Eur J Neurosci 2004; 20: 3351–63

    Article  PubMed  Google Scholar 

  85. O’Connor V, Genin A, Davis S, et al. Differential amplification of intron-containing transcripts reveals long term potentiation-associated up-regulation of specific PDE10A phosphodiesterase splice variants. J Biol Chem 2004; 279: 15841–9

    Article  PubMed  CAS  Google Scholar 

  86. Seeger TF, Bartlett B, Coskran TM, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res 2003; 985: 113–26

    Article  PubMed  CAS  Google Scholar 

  87. Xie Z, Adamowicz WO, Eldred WD, et al. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 2006; 139: 597–607

    Article  PubMed  CAS  Google Scholar 

  88. Coskran TM, Morton D, Adamowicz WO, et al. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 2006; 54: 1205–13

    Article  PubMed  CAS  Google Scholar 

  89. Siuciak JA, Chapin DS, Harms JF, et al. Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology 2006; 51: 386–96

    Article  PubMed  CAS  Google Scholar 

  90. Siuciak JA, Chapin DS, McCarthy SA, et al. Novel potent and selective phosphodiesterase 10A (PDE10A) inhibitors show activity in animal models of psychosis. Neuroscience Meeting Planner, Society for Neuroscience; 2006 Oct 11–18; Atlanta (GA) [online]. Available from URL: http://www.sfn.org/index.cfm?pagename=abstracts_ampublications&section=publications [Accessed 2008 Oct 28]

  91. Siuciak JA, Chapin DS, McCarthy SA, et al. Novel potent and selective PDE10A inhibitors show activity in animal models of psychosis and anxiety [abstract]. Schizophr Bull 2007; 33: 479

    Google Scholar 

  92. Chappie TA, Humphrey JM, Allen MP, et al. Discovery of a series of 6,7-dimethoxy-4-pyrrolidylquinazoline PDE10A inhibitors. J Med Chem 2007; 50: 182–5

    Article  PubMed  CAS  Google Scholar 

  93. Schmidt CJ, Chapin DS, Cianfrogna J, et al. A new therapeutic approach to the treatment of schizophrenia: preclinical characterization of selective PDE10A inhibitors. J Pharmacol Exp Ther 2008; 325: 681–90

    Article  PubMed  CAS  Google Scholar 

  94. Lindholm E, Ekholm B, Shaw S, et al. A schizophrenia-susceptibility locus at 6q25, in one of the world’s largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105

    Article  PubMed  CAS  Google Scholar 

  95. Rodefer JS, Murphy ER. Baxter MG. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 2005; 21: 1070–6

    Article  PubMed  Google Scholar 

  96. Liu F, Zhang G, Kelley C, et al. Biochemical analysis of mechanism action of PDE10A inhibitor papaverine in procognitive effects. Neuroscience Meeting Planner, Society for Neuroscience; 2006 Oct 11–18; Atlanta (GA) [online]. Available from URL: http://www.sfn.org/index.cfm?pagename=abstracts_ampublications&section=publications [Accessed 2008 Oct 28].

  97. Hebb AL, Robertson HA, Denovan-Wright EM. Phosphodiesterase 10A inhibition is associated with locomotor and cognitive deficits and increased anxiety in mice. Eur Neuropsychopharmacology 2008; 18: 339–63

    Article  CAS  Google Scholar 

  98. Cole JO, Branconnier RJ, Martin GF. Electroencephalographic and behavioral changes associated with papaverine administration in healthy geriatric subjects. J Am Geriatr Soc 1975; 23(7): 295–300

    PubMed  CAS  Google Scholar 

  99. Nelson JJ. Relieving select symptoms of the elderly. Geriatrics 1975; 30(3): 133–9, 142

    PubMed  CAS  Google Scholar 

  100. Yesavage JA, Tinklenberg JR, Hollister LE, et al. Vasodilators in senile dementias: a review of the literature. Arch Gen Psychiatry 1979; 36(2): 220–3

    Article  PubMed  CAS  Google Scholar 

  101. Smith WL, Philippus MJ, Lowrey JB. A comparison of psychological and psychophysical test patterns before and after receiving papaverine HCL. Curr Ther Res Clin Exp 1968; 10(9): 428–31

    PubMed  CAS  Google Scholar 

  102. Polli JW, Kincaid RL. Molecular cloning of DNA encoding a calmodulin-dependent phosphodiesterase enriched in striatum. Proc Natl Acad Sci U S A 1992; 89: 11079–83

    Article  PubMed  CAS  Google Scholar 

  103. Yan C, Bentley JK, Sonnenburg WK, et al. Differential expression of the 61 kDa and 63 kDa calmodulin-dependent phosphodiesterases in the mouse brain. J Neurosci 1994; 14: 973–84

    PubMed  CAS  Google Scholar 

  104. Van Staveren WC, Steinbusch HW, Markerink-Van Ittersum M, et al. mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol 2003; 467: 566–80

    Article  PubMed  CAS  Google Scholar 

  105. Juilfs DM, Soderling S, Burns F, et al. Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Rev Physiol Biochem 1999; 135: 67–104

    Article  CAS  Google Scholar 

  106. Cho CH, Cho DH, Seo MR, et al. Differential changes in the expression of cyclic nucleotide phosphodiesterase isoforms in rat brains by chronic treatment with electroconvulsive shock. Exp Mol Med 2000; 32: 110–4

    PubMed  CAS  Google Scholar 

  107. Sasaki T, Kotera J, Omori K. Novel alternative splice variants of rat phosphodiesterase 7B showing unique tissue-specific expression and phosphorylation. Biochemical J 2002; 361: 211–20

    Article  CAS  Google Scholar 

  108. Reyes-Irisarri E, Perez-Torres S, Mengod G. Neuronal expression of cAMP-specific phosphodiesterase 7B mRNA in the rat brain. Neuroscience 2005; 132: 1173–85

    Article  PubMed  CAS  Google Scholar 

  109. Boess FG, Hendrix M, van der Staay FJ, et al. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 2004; 47: 1081–92

    Article  PubMed  CAS  Google Scholar 

  110. Rutten K, Prickaerts J, Steinbusch H, et al. Inhibitors of PDE2, PDE4 and PDE5 enhance spatial memory in a time-dependent manner in the object location task in rats. 2007 Neuroscience Meeting Planner, Society for Neuroscience; 2007 Nov 3–7; San Diego (CA) [online]. Available from URL: http://www.sfn.org/index.cfm?pagename=abstracts_ampublications&section=publications [Accessed 2008 Oct 28]

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Judith Siuciak is an employee of Bristol-Myers Squibb Co. She has no other conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Siuciak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siuciak, J.A. The Role of Phosphodiesterases in Schizophrenia. CNS Drugs 22, 983–993 (2008). https://doi.org/10.2165/0023210-200822120-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/0023210-200822120-00002

Keywords

Navigation