Skip to main content
Log in

Classic and Recent Etiologies of Cushing’s Syndrome

Diagnosis and Therapy

  • Therapy In Practice
  • Published:
Treatments in Endocrinology

Abstract

Endogenous Cushing’s syndrome can result from excess adrenocorticotropic hormone (ACTH; corticotropin) production by a pituitary adenoma (Cushing’s disease) or by ectopic tumors secreting ACTH or corticotropin-releasing hormone (CRH). ACTH-independent Cushing’s syndrome is caused by adrenocortical tumors or hyperplasias.

Initial diagnosis is performed using 24-hour urinary free cortisol, low-dose dexamethasone tests, salivary cortisol, or night-time plasma cortisol values. A dexamethasone CRH test can discriminate between Cushing’s syndrome and pseudo-Cushing’s syndrome.

If ACTH is elevated, combinations of high-dose dexamethasone tests, CRH/desmopressin tests, and pituitary magnetic resonance imaging can indicate a pituitary source. Discrimination from an ectopic ACTH tumor often requires inferior petrosal sinus sampling to confirm the ACTH source. If ACTH is low, adrenal computed tomography scan will identify the adrenal lesion(s) implicated. Some cortisol-producing adrenal tumors or, more frequently, bilateral macronodular hyperplasias, are under the control of aberrant membrane hormone receptors, or altered activity of eutopic receptors.

The initial therapy of choice for patients with Cushing’s disease is the selective transsphenoidal removal of the corticotroph adenoma; this induces remission in approximately 80% of patients, but long-term relapse occurs in up to 30% of these cases. The choice of second-line therapy remains controversial. Repeat surgery can be successful when residual tumor is detectable on magnetic resonance imaging, but carries a high risk of hypopituitarism. Bilateral adrenalectomy may be a better choice in patients without visible residual tumors, particularly in women desiring fertility. Radiotherapy combined with ketoconazole or radiosurgery was recently found effective, but longer-term evaluation of hypopituitarism and brain function is required. Current studies do not support the systematic use of prophylactic radiotherapy after bilateral adrenalectomy to decrease the risk of Nelson’s syndrome; however, as soon as the residual tumor progresses, surgery and radiotherapy should be initiated.

Various drugs which inhibit steroid synthesis (ketoconazole, metyrapone, aminoglutethimide, mitotane) are often effective for rapidly controlling hypercortisolism either in preparation for surgery, after unsuccessful removal of the etiologic tumor, or while awaiting the full effect of radiotherapy or more definitive therapy.

Surgery is usually the treatment of choice for removal of cortisol-secreting adrenal tumors or ectopic ACTH/CRH-secreting tumors. The identification of aberrant adrenal receptors has recently allowed normalization of cortisol secretion by specific ligand receptor antagonists in limited cases of Cushing’s syndrome secondary to bilateral macronodular adrenal hyperplasia.

The long-term follow-up of patients treated for Cushing’s syndrome should include the adequate replacement of glucocorticoids and other hormones, treatment of osteoporosis, and detection of long-term relapse of Cushing’s syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Table III

Similar content being viewed by others

References

  1. Nieman LK. Cushing’s syndrome. In: De Groot LJ, Jameson JL, editors. Endocrinology. Philadephia (PA): W. B. Saunders Company, 2001: 1691–720

    Google Scholar 

  2. Orth DN, Kova WJ. The adrenal cortex. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR, editors. Williams’ textbook of endocrinology. Philadelphia (PA): W.B. Saunders Company, 1998: 517–664

    Google Scholar 

  3. Boscaro M, Barzon L, Fallo F, et al. Cushing’s syndrome. Lancet 2001; 357: 783–91

    Article  PubMed  CAS  Google Scholar 

  4. Kirschner LS, Carney JA, Pack SD, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000; 26(1): 89–92

    Article  PubMed  CAS  Google Scholar 

  5. Weinstein LS, Shenker A, Gejman PV, et al. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 1991; 325(24): 1688–95

    Article  PubMed  CAS  Google Scholar 

  6. Lacroix A, N’Diaye N, Tremblay J, et al. Ectopic and abnormal hormone receptors in adrenal cushing’s Ssyndrome. Endocr Rev 2001; 22(1): 75–110

    Article  PubMed  CAS  Google Scholar 

  7. Newell-Price J, Trainer P, Besser M, et al. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states. Endocr Rev 1998; 19(5): 647–72

    Article  PubMed  CAS  Google Scholar 

  8. Tomlinson JW, Draper N, Mackie J, et al. Absence of Cushingoid phenotype in a patient with Cushing’s disease due to defective cortisone to cortisol conversion. J Clin Endocrinol Metab 2002 Jan; 87(1): 57–62

    Article  PubMed  CAS  Google Scholar 

  9. Newell-Price J, Trainer P, Perry L, et al. A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin Endocrinol (Oxf) 1995; 43(5): 545–50

    Article  CAS  Google Scholar 

  10. Papanicolaou DA, Yanovski JA, Cutler Jr GB, et al. A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J Clin Endocrinol Metab 1998; 83(4): 1163–7

    Article  PubMed  CAS  Google Scholar 

  11. Raff H, Raff JL, Findling JW. Late-night salivary cortisol as a screening test for Cushing’s syndrome. J Clin Endocrinol Metab 1998; 83(8): 2681–6

    Article  PubMed  CAS  Google Scholar 

  12. Yanovski JA, Cutler Jr GB, Chrousos GP, et al. Corticotropin-releasing hormone stimulation following low-dose dexamethasone administration. A new test to distinguish Cushing’s syndrome from pseudo-Cushing’s states [see comments]. JAMA 1993; 269(17): 2232–8

    Article  PubMed  CAS  Google Scholar 

  13. Raff H, Findling JW. A new immunoradiometric assay for corticotropin evaluated in normal subjects and patients with Cushing’s syndrome. Clin Chem 1989; 35(4): 596–600

    PubMed  CAS  Google Scholar 

  14. Nieman LK, Chrousos GP, Oldfield EH, et al. The ovine corticotropin-releasing hormone stimulation test and the dexamethasone suppression test in the differential diagnosis of Cushing’s syndrome. Ann Intern Med 1986; 105(6): 862–7

    PubMed  CAS  Google Scholar 

  15. Tyrrell JB, Findling JW, Aron DC, et al. An overnight high-dose dexamethasone suppression test for rapid differential diagnosis of Cushing’s syndrome. Ann Intern Med 1986; 104(2): 180–6

    PubMed  CAS  Google Scholar 

  16. Abou Samra AB, Dechaud H, Estour B, et al. Beta-lipotropin and cortisol responses to an intravenous infusion dexamethasone suppression test in Cushing’s syndrome and obesity. J Clin Endocrinol Metab 1985; 61(1): 116–9

    Article  Google Scholar 

  17. Biemond P, de Jong FH, Lamberts SW. Continuous dexamethasone infusion for seven hours in patients with the Cushing syndrome. A superior differential diagnostic test. Ann Intern Med 1990; 112(10): 738–42

    PubMed  CAS  Google Scholar 

  18. al Saadi N, Diederich S, Oelkers W. A very high dose dexamethasone suppression test for differential diagnosis of Cushing’s syndrome. Clin Endocrinol (Oxf) 1998; 48(1): 45–51

    Article  Google Scholar 

  19. Aron DC, Raff H, Findling JW. Effectiveness versus efficacy: the limited value in clinical practice of high dose dexamethasone suppression testing in the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 1997 Jun; 82(6): 1780–5

    Article  PubMed  CAS  Google Scholar 

  20. Stratakis CA, Sarlis N, Kirschner LS, et al. Paradoxical response to dexamethasone in the diagnosis of primary pigmented nodular adrenocortical disease. Ann Intern Med 1999; 131(8): 585–91

    PubMed  CAS  Google Scholar 

  21. Giraldi FP, Invitti C, Cavagnini F. The corticotropin-releasing hormone test in the diagnosis of ACTH-dependent Cushing’s syndrome: a reappraisal. Clin Endocrinol (Oxf) 2001; 54(5): 601–7

    Article  CAS  Google Scholar 

  22. Yap LB, Turner HE, Adams CB, et al. Undetectable postoperative cortisol does not always predict long-term remission in Cushing’s disease: a single centre audit. Clin Endocrinol (Oxf) 2002; 56(1): 25–31

    Article  CAS  Google Scholar 

  23. Nieman LK, Oldfield EH, Wesley R, et al. A simplified morning ovine corticotropin-releasing hormone stimulation test for the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 1993; 77(5): 1308–12

    Article  PubMed  CAS  Google Scholar 

  24. Kaye TB, Crapo L. The Cushing syndrome: an update on diagnostic tests. Ann Intern Med 1990; 112(6): 434–44

    PubMed  CAS  Google Scholar 

  25. Newell-Price J, Perry L, Medbak S, et al. A combined test using desmopressin and corticotropin-releasing hormone in the differential diagnosis of Cushing’s syndrome. J Clin Endocrinol Metab 1997; 82(1): 176–81

    Article  PubMed  CAS  Google Scholar 

  26. Terzolo M, Reimondo G, Ali A, et al. The limited value of the desmopressin test in the diagnostic approach to Cushing’s syndrome. Clin Endocrinol (Oxf) 2001; 54(5): 609–16

    Article  CAS  Google Scholar 

  27. Hall WA, Luciano MG, Doppman JL, et al. Pituitary magnetic resonance imaging in normal human volunteers: occult adenomas in the general population. Ann Intern Med 1994; 120(10): 817–20

    PubMed  CAS  Google Scholar 

  28. Barzon L, Scaroni C, Sonino N, et al. Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J Clin Endocrinol Metab 1998; 83(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  29. Hoh CK, Schiepers C, Seltzer MA, et al. PET in oncology: will it replace the other modalities? Semin Nucl Med 1997; 27(2): 94–106

    Article  PubMed  CAS  Google Scholar 

  30. Oldfield EH, Doppman JL, Nieman LK, et al. Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N Engl J Med 1991; 325(13): 897–905

    Article  PubMed  CAS  Google Scholar 

  31. Wiggam MI, Heaney AP, McIlrath EM, et al. Bilateral inferior petrosal sinus sampling in the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome: a comparison with other diagnostic tests. J Clin Endocrinol Metab 2000; 85(4): 1525–32

    Article  PubMed  CAS  Google Scholar 

  32. Kaltsas GA, Giannulis MG, Newell-Price JD, et al. A critical analysis of the value of simultaneous inferior petrosal sinus sampling in Cushing’s disease and the occult ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 1999; 84(2): 487–92

    Article  PubMed  CAS  Google Scholar 

  33. Torpy DJ, Chen CC, Mullen N, et al. Lack of utility of (111)In-pentetreotide scintigraphy in localizing ectopic ACTH producing tumors: follow-up of 18 patients. J Clin Endocrinol Metab 1999; 84(4): 1186–92

    Article  PubMed  CAS  Google Scholar 

  34. Tabarin A, Valli N, Chanson P, et al. Usefulness of somatostatin receptor scintigraphy in patients with occult ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 1999 Apr; 84(4): 1193–202

    Article  PubMed  CAS  Google Scholar 

  35. Mircescu H, Jilwan J, N’Diaye N, et al. Are ectopic or abnormal membrane hormone receptors frequently present in adrenal Cushing’s syndrome? J Clin Endocrinol Metab 2000; 85(10): 3531–6

    Article  PubMed  CAS  Google Scholar 

  36. Lacroix A, Mircescu H, Hamet P. Clinical evaluation of the presence of abnormal hormone receptors in adrenal Cushing’s syndrome. The Endocrinologist 1999; 9: 9–15

    Article  Google Scholar 

  37. Bertherat J, Barrande G, Lefebvre H, et al. Systematic screening confirms that illicit membrane receptors are frequent and often multiple in bilateral ACTH-independent macronodular adrenal hyperplasia (AIMAH) [abstract P1-397]. The Endocrine Society’s 83rd Annual Meeting; 2001 Jun 20–23; Denver, Colorado. 233

  38. Bourdeau I, D’Amour P, Hamet P, et al. Aberrant membrane hormone receptors in incidentally discovered bilateral macronodular adrenal hyperplasia with sub-clinical Cushing’s syndrome. J Clin Endocrinol Metab 2001; 86(11): 5534–40

    Article  PubMed  CAS  Google Scholar 

  39. Arnaldi G, Gasc JM, de Keyzer Y, et al. Variable expression of the VI vasopressin receptor modulates the phenotypic response of steroid-secreting adrenocortical tumors. J Clin Endocrinol Metab 1998; 83(6): 2029–35

    Article  PubMed  CAS  Google Scholar 

  40. Mampalam TJ, Tyrrell JB, Wilson CB. Transsphenoidal microsurgery for Cushing disease. A report of 216 cases. Ann Intern Med 1988; 109(6): 487–93

    PubMed  CAS  Google Scholar 

  41. Tyrrell JB, Wilson CB. Cushing’s disease: therapy of pituitary adenomas. Endocrinol Metab Clin North Am 1994; 23(4): 925–38

    PubMed  CAS  Google Scholar 

  42. Pieters GF, Hermus AR, Meijer E, et al. Predictive factors for initial cure and relapse rate after pituitary surgery for Cushing’s disease. J Clin Endocrinol Metab 1989; 69(6): 1122–6

    Article  PubMed  CAS  Google Scholar 

  43. Sonino N, Zielezny M, Fava GA, et al. Risk factors and long-term outcome in pituitary-dependent Cushing’s disease. J Clin Endocrinol Metab 1996; 81(7): 2647–52

    Article  PubMed  CAS  Google Scholar 

  44. Chee GH, Mathias DB, James RA, et al. Transsphenoidal pituitary surgery in Cushing’s disease: can we predict outcome? Clin Endocrinol (Oxf) 2001; 54(5): 617–26

    Article  CAS  Google Scholar 

  45. McCance DR, Gordon DS, Fannin TF, et al. Assessment of endocrine function after transsphenoidal surgery for Cushing’s disease. Clin Endocrinol (Oxf) 1993; 38(1): 79–86

    Article  CAS  Google Scholar 

  46. Vignati F, Berselli ME, Loi P. Early postoperative evaluation in patients with Cushing’s disease: usefulness of ovine corticotropin-releasing hormone test in the prediction of recurrence of disease. Eur J Endocrinol 1994; 130(3): 235–41

    Article  PubMed  CAS  Google Scholar 

  47. Simmons NE, Alden TD, Thorner MO, et al. Serum cortisol response to transsphenoidal surgery for Cushing disease. J Neurosurg 2001; 95(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  48. Avgerinos PC, Chrousos GP, Nieman LK, et al. The corticotropin-releasing hormone test in the postoperative evaluation of patients with cushing’s syndrome. J Clin Endocrinol Metab 1987; 65(5): 906–13

    Article  PubMed  CAS  Google Scholar 

  49. Losa M, Mortini P, Dylgjeri S, et al. Desmopressin stimulation test before and after pituitary surgery in patients with Cushing’s disease. Clin Endocrinol (Oxf) 2001; 55(1): 61–8

    Article  CAS  Google Scholar 

  50. McCance DR, Besser M, Atkinson AB. Assessment of cure after transsphenoidal surgery for Cushing’s disease. Clin Endocrinol (Oxf) 1996; 44(1): 1–6

    Article  CAS  Google Scholar 

  51. Bochicchio D, Losa M, Buchfelder M. Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group [see comments]. J Clin Endocrinol Metab 1995; 80(11): 3114–20

    Article  PubMed  CAS  Google Scholar 

  52. Estrada J, Garcia-Uria J, Lamas C, et al. The complete normalization of the adrenocortical function as the criterion of cure after transsphenoidal surgery for Cushing’s disease. J Clin Endocrinol Metab 2001 Dec; 86(12): 5695–9

    Article  PubMed  CAS  Google Scholar 

  53. Bourdeau I, Leclerc I., Lacroix A. Intravenous dexamethasone suppression test for the early detection of relapse of Cushing’s disease after transsphenoidal surgery [abstract P3-527]. The Endocrine Society’s 83rd Meeting; 2001 Jun 20–23; Denver, Colorado. 561

  54. Friedman RB, Oldfield EH, Nieman LK, et al. Repeat transsphenoidal surgery for Cushing’s disease. J Neurosurg 1989; 71(4): 520–7

    Article  PubMed  CAS  Google Scholar 

  55. Ludecke DK. Transnasal microsurgery of Cushing’s disease 1990. Overview including personal experiences with 256 patients. Pathol Res Pract 1991; 187(5): 608–12

    Article  PubMed  CAS  Google Scholar 

  56. Orth DN, Liddle GW. Results of treatment in 108 patients with Cushing’s syndrome. N Engl J Med 1971; 285(5): 243–7

    Article  PubMed  CAS  Google Scholar 

  57. Estrada J, Boronat M, Mielgo M, et al. The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease [see comments]. N Engl J Med 1997; 336(3): 172–7

    Article  PubMed  CAS  Google Scholar 

  58. Imaki T, Tsushima T, Hizuka N, et al. Postoperative plasma cortisol levels predict long-term outcome in patients with Cushing’s disease and determine which patients should be treated with pituitary irradiation after surgery. Endocr J 2001; 48(1): 53–62

    Article  PubMed  CAS  Google Scholar 

  59. Howlett TA, Plowman PN, Wass JA, et al. Megavoltage pituitary irradiation in the management of Cushing’s disease and Nelson’s syndrome: long-term follow-up. Clin Endocrinol (Oxf) 1989; 31(3): 309–23

    Article  CAS  Google Scholar 

  60. Levy RP, Fabrikant JI, Frankel KA, et al. Heavy-charged-particle radiosurgery of the pituitary gland: clinical results of 840 patients. Stereotact Funct Neurosurg 1991; 57(1-2): 22–35

    Article  PubMed  CAS  Google Scholar 

  61. Sheehan JM, Vance ML, Sheehan JP, et al. Radiosurgery for Cushing’s disease after failed transsphenoidal surgery. J Neurosurg 2000; 93(5): 738–42

    Article  PubMed  CAS  Google Scholar 

  62. Manolas KJ, Farmer HM, Wilson HK, et al. The pituitary before and after adrenalectomy for Cushing’s syndrome. World J Surg 1984; 8(3): 374–87

    Article  PubMed  CAS  Google Scholar 

  63. Pereira MA, Halpern A, Salgado LR, et al. A study of patients with Nelson’s syndrome. Clin Endocrinol (Oxf) 1998; 49(4): 533–9

    Article  CAS  Google Scholar 

  64. Jenkins PJ, Trainer PJ, Plowman PN, et al. The long-term outcome after adrenalectomy and prophylactic pituitary radiotherapy in adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 1995; 80(1): 165–71

    Article  PubMed  CAS  Google Scholar 

  65. Kemink SA, Grotenhuis JA, De Vries J, et al. Management of Nelson’s syndrome: observations in fifteen patients. Clin Endocrinol (Oxf) 2001; 54(1): 45–52

    Article  CAS  Google Scholar 

  66. Trainer PJ, Besser M. Cushing’s syndrome: therapy directed at the adrenal glands. Endocrinol Metab Clin North Am 1994; 23(3): 571–84

    PubMed  CAS  Google Scholar 

  67. Jossart GH, Burpee SE, Gagner M. Surgery of the adrenal glands. Endocrinol Metab Clin North Am 2000; 29: 57–68

    Article  PubMed  CAS  Google Scholar 

  68. Schteingart DE, Homan D. Management of adrenal cancer. In: Margioris AN, Chrousos GP, editors. Contemporary endocrinology: adrenal disorders. Totowa (NJ): Humana Press, 2001: 231–47

    Google Scholar 

  69. Stratakis CA, Chrousos GP. Adrenal cancer. Endocrinol Metab Clin North Am 2000; 29: 15–25

    Article  PubMed  CAS  Google Scholar 

  70. Lamas C, Alfaro JJ, Lucas T, et al. Is unilateral adrenalectomy an alternative treatment for ACTH-independent macronodular adrenal hyperplasia?: long-term follow-up of four cases. Eur J Endocrinol 2002; 146(2): 237–40

    Article  PubMed  CAS  Google Scholar 

  71. Miller JW, Crapo L. The medical treatment of Cushing’s syndrome. Endocr Rev 1993; 14: 443–58

    PubMed  CAS  Google Scholar 

  72. Sonino N. The use of ketoconazole as an inhibitor of steroid production. N Engl J Med 1987; 317(13): 812–8

    Article  PubMed  CAS  Google Scholar 

  73. Berwaerts J, Verhelst J, Mahler C, et al. Cushing’s syndrome in pregnancy treated by ketoconazole: case report and review of the literature. Gynecol Endocrinol 1999 Jun; 13(3): 175–82

    Article  PubMed  CAS  Google Scholar 

  74. Zollner E, Delport S, Bonnici F. Fatal liver failure due to ketoconazole treatment of a girl with Cushing’s syndrome. J Pediatr Endocrinol Metab 2001; 14(3): 335–8

    Article  PubMed  CAS  Google Scholar 

  75. Umstead GS, Babiak LM, Tejwani S. Immune hemolytic anemia associated with ketoconazole therapy. Clin Pharm 1987; 6(6): 499–500

    PubMed  CAS  Google Scholar 

  76. Orth DN. Metyrapone is useful only as adjunctive therapy in Cushing’s disease. Ann Intern Med 1978; 89(1): 128–30

    PubMed  CAS  Google Scholar 

  77. Verhelst JA, Trainer PJ, Howlett TA, et al. Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol (Oxf) 1991; 35(2): 169–78

    Article  CAS  Google Scholar 

  78. Nussey SS, Price P, Jenkins JS, et al. The combined use of sodium valproate and metyrapone in the treatment of Cushing’s syndrome. Clin Endocrinol (Oxf) 1988; 28(4): 373–80

    Article  CAS  Google Scholar 

  79. Misbin RI, Canary J, Willard D. Aminoglutethimide in the treatment of Cushing’s syndrome. J Clin Pharmacol 1976; 16(11-12): 645–51

    PubMed  CAS  Google Scholar 

  80. Thoren M, Adamson U, Sjoberg HE. Aminoglutethimide and metyrapone in the management of Cushing’s syndrome. Acta Endocrinol (Copenh) 1985; 109(4): 451–7

    CAS  Google Scholar 

  81. Sonino N, Boscaro M. Medical therapy for Cushing’s disease. Endocrinol Metab Clin North Am 1999; 28(1): 211–22

    Article  PubMed  CAS  Google Scholar 

  82. Luton JP, Mahoudeau JA, Bouchard P, et al. Treatment of Cushing’s disease by O,p’DDD: survey of 62 cases. N Engl J Med 1979; 300(9): 459–64

    Article  PubMed  CAS  Google Scholar 

  83. Schteingart DE. Current perspective in the diagnosis and treatment of adrenocortical carcinoma. Rev Endocr Metab Disord 2001 Aug; 2(3): 323–33

    Article  PubMed  CAS  Google Scholar 

  84. Krieger DT, Amorosa L, Linick F. Cyproheptadine-induced remission of Cushing’s disease. N Engl J Med 1975; 293(18): 893–6

    Article  PubMed  CAS  Google Scholar 

  85. Beckers A, Stevenaert A, Pirens G, et al. Cyclical Cushing’s disease and its successful control under sodium valproate. J Endocrinol Invest 1990; 13(11): 923–9

    PubMed  CAS  Google Scholar 

  86. Colao A, Pivonello R, Tripodi FS, et al. Failure of long-term therapy with sodium valproate in Cushing’s disease. J Endocrinol Invest 1997; 20(7): 387–92

    PubMed  CAS  Google Scholar 

  87. de Herder WW, Lamberts SW. Is there a role for somatostatin and its analogs in Cushing’s syndrome? Metabolism 1996; 45(8 Suppl. 1): 83–5

    Article  PubMed  Google Scholar 

  88. Vignati F, Loli P. Additive effect of ketoconazole and octreotide in the treatment of severe adrenocorticotropin-dependent hypercortisolism. J Clin Endocrinol Metab 1996; 81(8): 2885–90

    Article  PubMed  CAS  Google Scholar 

  89. Hale AC, Coates PJ, Doniach I, et al. A bromocriptine-responsive corticotroph adenoma secreting alpha-MSH in a patient with Cushing’s disease. Clin Endocrinol (Oxf) 1988; 28(2): 215–23

    Article  CAS  Google Scholar 

  90. Koppeschaar HP, Croughs RJ, Thijssen JH, et al. Response to neurotransmitter modulating drugs in patients with Cushing’s disease. Clin Endocrinol (Oxf) 1986; 25(6): 661–7

    Article  CAS  Google Scholar 

  91. Bertagna X, Bertagna C, Laudat MH, et al. Pituitary-adrenal response to the anti-glucocorticoid action of RU 486 in Cushing’s syndrome. J Clin Endocrinol Metab 1986; 63(3): 639–43

    Article  PubMed  CAS  Google Scholar 

  92. Chu JW, Matthias DF, Belanoff J, et al. Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab 2001; 86(8): 3568–73

    Article  PubMed  CAS  Google Scholar 

  93. Hingshaw HT, Ney RL. Abnormal control in the neoplastic adrenal cortex. In: McKerns KW, editor. Hormones and cancer. New York: Academic Press, 1974: 309–27

    Google Scholar 

  94. Reznik Y, Allali-Zerah V, Chayvialle JA, et al. Food-dependent Cushing’s syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N Engl J Med 1992; 327(14): 981–6

    Article  PubMed  CAS  Google Scholar 

  95. Daidoh H, Morita H, Hanafusa J, et al. In vivo and in vitro effects of AVP and V1a receptor antagonist on Cushing’s syndrome due to ACTH-independent bilateral macronodular adrenocortical hyperplasia. Clin Endocrinol (Oxf) 1998; 49(3): 403–9

    Article  CAS  Google Scholar 

  96. Lacroix A, Tremblay J, Rousseau G, et al. Propranolol therapy for ectopic beta-adrenergic receptors in adrenal Cushing’s syndrome. N Engl J Med 1997; 337(20): 1429–34

    Article  PubMed  CAS  Google Scholar 

  97. Lacroix A, Hamet P, Boutin JM. Leuprolide acetate therapy in luteinizing hormone-dependent Cushing’s syndrome. N Engl J Med 1999; 341(21): 1577–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a grant from the Canadian Institutes of Health Research (MA-10339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Lacroix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauregard, C., Dickstein, G. & Lacroix, A. Classic and Recent Etiologies of Cushing’s Syndrome. Mol Diag Ther 1, 79–94 (2002). https://doi.org/10.2165/00024677-200201020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200201020-00002

Keywords

Navigation