Skip to main content
Log in

Clinical Implications of CNS Penetration of Antiretroviral Drugs

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The CNS serves as an important sanctuary site for HIV replication. The presence of HIV in this compartment may contribute to neurological complications in individuals infected with HIV. Understanding the CNS penetration capabilities of available antiretroviral agents may help clinicians to design treatment regimens with neuroprotective effects. Although numerous clinical studies and anecdotal reports have examined CSF antiretroviral drug exposure as a marker of CNS penetration, understanding the clinical relevance of these findings is difficult. Challenges with study design and subject recruitment often limit the investigator’s ability to collect comprehensive data. Upon review of available data, the antiretroviral agents zidovudine, stavudine, lamivudine, nevirapine, efavirenz and indinavir demonstrate consistent penetration into the CSF. Zidovudine-, stavudine-, lamivudine-, didanosine- and protease inhibitor-based regimens also appear to suppress CSF viraemia or improve HIV neurological disease. These agents may be appropriate candidates for neuroprotective antiretroviral treatment regimens. Despite these data, several unanswered questions about the CSF antiretroviral drug exposure-response relationship still remain. Prospective, controlled studies examining this relationship are needed before absolute clinical recommendations are founded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection: HIV Outpatient Study Investigators. N Engl J Med 1998; 338: 853–60

    Article  PubMed  Google Scholar 

  2. Hoetelmans RM. Sanctuary sites in HIV-1 infection. Antivir Ther 1998; 3: 13–7

    PubMed  Google Scholar 

  3. Brew BJ, Pemberton L, Cunningham P, et al. Levels of human immunodeficiency virus type 1 RNA in cerebrospinal fluid correlate with AIDS dementia stage. J Infect Dis 1997; 175: 963–6

    Article  PubMed  CAS  Google Scholar 

  4. Cinque P, Vago L, Ceresa D, et al. Cerebrospinal fluid HIV-1 RNA levels: correlation with HIV encephalitis. AIDS 1998; 12: 389–94

    Article  PubMed  CAS  Google Scholar 

  5. Ellis RJ, Hsia K, Spector SA, et al. Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome: HIV Neurobehavioral Research Center Group. Ann Neurol 1997; 42: 679–88

    Article  PubMed  CAS  Google Scholar 

  6. McArthur JC, McClernon DR, Cronin MF, et al. Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 1997; 42: 689–98

    Article  PubMed  CAS  Google Scholar 

  7. Mastroianni CM, Trinchieri V, Santopadre P, et al. Reversal of AIDS dementia after combination therapy with stavudine, lamivudine, and nelfinavir. J Neurol 1999; 246: 972–3

    Article  PubMed  CAS  Google Scholar 

  8. Rosenfeldt V, Valerius NH, Paerregaard A. Regression of HIV-associated progressive encephalopathy of childhood during HAART. Scand J Infect Dis 2000; 32: 571–4

    Article  PubMed  CAS  Google Scholar 

  9. Acosta EP, Henry K, Baken L, et al. Indinavir concentrations and antiviral effect. Pharmacotherapy 1999; 19: 708–12

    Article  PubMed  CAS  Google Scholar 

  10. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med 2000; 133: 21–30

    PubMed  CAS  Google Scholar 

  11. Henry KW, Worley J, Sullivan C, et al. Documented improvement in late stage manifestations of AIDS after starting ritonavir in combination with two reverse transcriptase inhibitors [abstract no. 356]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26; Washington, DC. Alexandria (VA): Foundation for Retrovirology and Human Health, 1997: 130

    Google Scholar 

  12. Stellbrink HJ, Eggers C, van Lunzen J, et al. Rapid decay of HIV RNA in the cerebrospinal fluid during antiretroviral combination therapy. AIDS 1997; 11: 1655–7

    Article  PubMed  CAS  Google Scholar 

  13. Gisslen M, Hagberg L, Svennerholm B, et al. HIV-1 RNA is not detectable in the cerebrospinal fluid during antiretroviral combination therapy [letter]. AIDS 1997; 11: 1194

    Article  PubMed  CAS  Google Scholar 

  14. Gisslen M, Norkrans G, Svennerholm B, et al. HIV-1 RNA detectable with ultrasensitive quantitative polymerase chain reaction in plasma but not in cerebrospinal fluid during combination treatment with zidovudine, lamivudine and indinavir. AIDS 1998; 12: 114–6

    PubMed  CAS  Google Scholar 

  15. Kravcik S, Gallicano K, Roth V, et al. Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. J Acquir Immune Defic Syndr 1999; 21: 371–5

    PubMed  CAS  Google Scholar 

  16. Gisolf EH, Enting RH, Jurriaans S, et al. Cerebrospinal fluid HIV-1 RNA during treatment with ritonavir/saquinavir or ritonavir/saquinavir/stavudine. AIDS 2000; 14: 1583–9

    Article  PubMed  CAS  Google Scholar 

  17. Goldstein GW, Betz AL. The blood-brain barrier. Sci Am 1986; 255: 74–83

    Article  PubMed  CAS  Google Scholar 

  18. Spector R, Johanson CE. The mammalian choroid plexus. Sci Am 1989; 261: 68–74

    Article  PubMed  CAS  Google Scholar 

  19. Rosenburg GA, editor. Anatomy of brain interfaces. Brain fluids and metabolism. New York: Oxford Press, 1990

    Google Scholar 

  20. Ghersi-Egea JF, Strazielle N. Brain drug delivery, drug metabolism and multi-drug resistance at the choroid plexus. Microsc Res Tech 2001; 52: 83–8

    Article  PubMed  CAS  Google Scholar 

  21. Rosenburg GA, editor. Physiology of cerebrospinal and interstitial fluids. Brain fluids and metabolism. New York: Oxford Press, 1990

    Google Scholar 

  22. Begley DJ, Khan EU, Rollinson C, et al. The role of brain extracellular fluid production and efflux mechanism in drug transport to the brain. In: Begley DJ, Bradbury MW, Kreuter J, editors. The blood-brain barrier and drug delivery to the CNS. New York: Marcel Dekker, Inc., 2000

    Google Scholar 

  23. Takasawa K, Terasaki T, Suzuki H, et al. In vivo evidence for carrier-mediated efflux transport of 3′-azido-3′-deoxythymidine and 2′,3′-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. J Pharmacol Exp Ther 1997; 281: 369–75

    PubMed  CAS  Google Scholar 

  24. Burger DM, Meenhorst PL, Beijnen JH. Concise overview of the clinical pharmacokinetics of dideoxynucleoside antiretroviral agents. Pharm World Sci 1995; 17: 25–30

    Article  PubMed  CAS  Google Scholar 

  25. Sommadossi JP. HIV protease inhibitors: pharmacologic and metabolic distinctions. AIDS 1999; 13Suppl. 1: S29–40

    PubMed  CAS  Google Scholar 

  26. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94

    Article  PubMed  CAS  Google Scholar 

  27. Huisman MT, Smit JW, Schinkel AH. Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS 2000; 14: 237–42

    Article  PubMed  CAS  Google Scholar 

  28. Rolinski B, Bogner JR, Sadri I, et al. Absorption and elimination kinetics of zidovudine in the cerebrospinal fluid in HIV-1-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 15: 192–7

    Article  PubMed  CAS  Google Scholar 

  29. Haas DW, Clough LA, Johnson BW, et al. Evidence of a source of HIV type 1 within the central nervous system by ultra-intensive sampling of cerebrospinal fluid and plasma. AIDS Res Hum Retroviruses 2000; 16: 1491–502

    Article  PubMed  CAS  Google Scholar 

  30. Haas DW, Stone J, Clough LA, et al. Steady-state pharmacokinetics of indinavir in cerebrospinal fluid and plasma among adults with human immunodeficiency virus type 1 infection. Clin Pharmacol Ther 2000; 68: 367–74

    Article  PubMed  CAS  Google Scholar 

  31. Anderson PL, Brundage RC, Bushman L, et al. Indinavir plasma protein binding in HIV-1-infected adults. AIDS 2000; 14: 2293–7

    Article  PubMed  CAS  Google Scholar 

  32. Yost RL, DeVane CL. Diurnal variation of alpha 1-acid glycoprotein concentration in normal volunteers. J Pharm Sci 1985; 74: 777–9

    Article  PubMed  CAS  Google Scholar 

  33. Sadler BM, Gillotin C, Lou Y, et al. In vivo effect of alpha(1)-acid glycoprotein on pharmacokinetics of amprenavir, a human immunodeficiency virus protease inhibitor. Antimicrob Agents Chemother 2001; 45: 852–6

    Article  PubMed  CAS  Google Scholar 

  34. Tartaglione TA, Collier AC, Coombs RW, et al. Acquired immunodeficiency syndrome: cerebrospinal fluid findings in patients before and during long-term oral zidovudine therapy. Arch Neurol 1991; 48: 695–9

    Article  PubMed  CAS  Google Scholar 

  35. Burger DM, Kraaijeveld CL, Meenhorst PL, et al. Penetration of zidovudine into the cerebrospinal fluid of patients infected with HIV. AIDS 1993; 7: 1581–7

    Article  PubMed  CAS  Google Scholar 

  36. Elovaara I, Poutiainen E, Lahdevirta J, et al. Zidovudine reduces intrathecal immunoactivation in patients with early human immunodeficiency virus type 1 infection. Arch Neurol 1994; 51: 943–50

    Article  PubMed  CAS  Google Scholar 

  37. Klecker Jr RW, Collins JM, Yarchoan R, et al. Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythy-midine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther 1987; 41: 407–12

    Article  PubMed  Google Scholar 

  38. Lane HC, Falloon J, Walker RE, et al. Zidovudine in patients with human immunodeficiency virus (HIV) infection and Kaposi sarcoma: a phase II randomized, placebo-controlled trial. Ann Intern Med 1989; 111: 41–50

    PubMed  CAS  Google Scholar 

  39. Yarchoan R, Thomas RV, Grafman J, et al. Long-term administration of 3′-azido-2′,3′-dideoxythymidine to patients with AIDS-related neurological disease. Ann Neurol 1988; 23 Suppl.: S82–7

    Article  PubMed  Google Scholar 

  40. Yarchoan R, Berg G, Brouwers P, et al. Response of human-immunodeficiency-virus-associated neurological disease to 3′-azido-3′-deoxythymidine. Lancet 1987; I: 132–5

    Article  Google Scholar 

  41. Surbone A, Yarchoan R, McAtee N, et al. Treatment of the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex with a regimen of 3′-azido-2′,3′-dideoxythymidine (azidothymidine or zidovudine) and acyclovir: a pilot study. Ann Intern Med 1988; 108: 534–40

    PubMed  CAS  Google Scholar 

  42. Pizzo PA, Eddy J, Falloon J, et al. Effect of continuous intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N Engl J Med 1988; 319: 889–96

    Article  PubMed  CAS  Google Scholar 

  43. Balis FM, Pizzo PA, Murphy RF, et al. The pharmacokinetics of zidovudine administered by continuous infusion in children. Ann Intern Med 1989; 110: 279–85

    PubMed  CAS  Google Scholar 

  44. KleckerJr RW, Collins JM, Yarchoan RC, et al. Pharmacokinetics of 2′,3′-dideoxycytidine in patients with AIDS and related disorders. J Clin Pharmacol 1988; 28: 837–42

    PubMed  Google Scholar 

  45. Yarchoan R, Mitsuya H, Thomas RV, et al. In vivo activity against HIV and favorable toxicity profile of 2′,3′-dideoxyinosine. Science 1989; 245: 412–5

    Article  PubMed  CAS  Google Scholar 

  46. Hartman NR, Yarchoan R, Pluda JM, et al. Pharmacokinetics of 2′,3′-dideoxyadenosine and 2′,3′-dideoxyinosine in patients with severe human immunodeficiency virus infection. Clin Pharmacol Ther 1990; 47: 647–54

    Article  PubMed  CAS  Google Scholar 

  47. Balis FM, Pizzo PA, Butler KM, et al. Clinical pharmacology of 2′,3′-dideoxyinosine in human immunodeficiency virus-infected children. J Infect Dis 1992; 165: 99–104

    Article  PubMed  CAS  Google Scholar 

  48. Burger DM, Kraayeveld CL, Meenhorst PL, et al. Study on didanosine concentrations in cerebrospinal fluid: implications for the treatment and prevention of AIDS dementia complex. Pharm World Sci 1995; 17: 218–21

    Article  PubMed  CAS  Google Scholar 

  49. Dudley MN, Graham KK, Kaul S, et al. Pharmacokinetics of stavudine in patients with AIDS or AIDS-related complex. J Infect Dis 1992; 166: 480–5

    Article  PubMed  CAS  Google Scholar 

  50. Kline MW, Dunkle LM, Church JA, et al. A phase I/II evaluation of stavudine (d4T) in children with human immunodeficiency virus infection. Pediatrics 1995; 96: 247–52

    PubMed  CAS  Google Scholar 

  51. Haworth SJ, Christofalo B, Anderson RD, et al. A single-dose study to assess the penetration of stavudine into human cerebrospinal fluid in adults. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 17: 235–8

    Article  PubMed  CAS  Google Scholar 

  52. vanLeeuwen R, Katlama C, Kitchen V, et al. Evaluation of safety and efficacy of 3TC (lamivudine) in patients with asymptomatic or mildly symptomatic human immunodeficiency virus infection: a phase I/II study. J Infect Dis 1995; 171: 1166–71

    Article  PubMed  Google Scholar 

  53. Lewis LL, Venzon D, Church J, et al. Lamivudine in children with human immunodeficiency virus infection: a phase I/II study: The National Cancer Institute Pediatric Branch-Human Immunodeficiency Virus Working Group. J Infect Dis 1996; 174: 16–25

    Article  PubMed  CAS  Google Scholar 

  54. Mueller BU, Lewis LL, Yuen GJ, et al. Serum and cerebrospinal fluid pharmacokinetics of intravenous and oral lamivudine in human immunodeficiency virus-infected children. Anti-microb Agents Chemother 1998; 42: 3187–92

    CAS  Google Scholar 

  55. Blaschke AJ, Capparelli EV, Ellis RJ, et al. A population model-based approach for determining lamivudine (3TC) cerebrospinal fluid (CSF) penetration in HIV-infected adults [abstract no. 310]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 30-Feb 2; San Francisco. Alexandria (VA): Foundation for Retrovirology and Human Health, 2000: 135

    Google Scholar 

  56. Foudraine NA, Hoetelmans RM, Lange JM, et al. Cerebrospinal-fluid HIV-1 RNA and drug concentrations after treatment with lamivudine plus zidovudine or stavudine. Lancet 1998; 351: 1547–51

    Article  PubMed  CAS  Google Scholar 

  57. McDowell JA, Chittick GE, Ravitch JR, et al. Pharmacokinetics of [(14)C]abacavir, a human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitor, administered in a single oral dose to HIV-1-infected adults: a mass balance study. Antimicrob Agents Chemother 1999; 43: 2855–61

    PubMed  CAS  Google Scholar 

  58. McDowell JA, Lou Y, Symonds WS, et al. Multiple-dose pharmacokinetics and pharmacodynamics of abacavir alone and in combination with zidovudine in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 2000; 44: 2061–7

    Article  PubMed  CAS  Google Scholar 

  59. Gisslen M, Norkrans G, Svennerholm B, et al. The effect on human immunodeficiency virus type 1 RNA levels in cerebrospinal fluid after initiation of zidovudine or didanosine. J Infect Dis 1997; 175: 434–7

    Article  PubMed  CAS  Google Scholar 

  60. Englund JA, Baker CJ, Raskino C, et al. Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV-infected children: AIDS Clinical Trials Group (ACTG) Study 152 Team. N Engl J Med 1997; 336: 1704–12

    Article  PubMed  CAS  Google Scholar 

  61. Smith PF, DiCenzo R, Morse GD. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 2001; 40: 893–905

    Article  PubMed  CAS  Google Scholar 

  62. Prins J, van Praag R, Jurrians S, et al. Drug levels and HIV-1 RNA in serum and CSF during treatment with a five-drug regimen: AZT, 3TC, abacavir, nevirapine (NVP), and indinavir [abstract no. 309]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 30-Feb 2; San Francisco. Alexandria (VA): Foundation for Retrovirology and Human Health, 2000: 135

    Google Scholar 

  63. Kearney B, Price R, Sheiner L, et al. Estimation of nevirapine exposure within the cerebrospinal fluid using CSF: plasma area under the curve ratios [abstract no. 406]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31-Feb 4; Chicago. Alexandria (VA): Foundation for Retrovirology and Human Health, 1999: 144

    Google Scholar 

  64. Tashima KT, Caliendo AM, Ahmad M, et al. Cerebrospinal fluid human immunodeficiency virus type 1 (HIV-1) suppression and efavirenz drug concentrations in HIV-1-infected patients receiving combination therapy. J Infect Dis 1999; 180: 862–4

    Article  PubMed  CAS  Google Scholar 

  65. Fletcher CV, Brundage RC, Remmel RP, et al. Pharmacologic characteristics of indinavir, didanosine, and stavudine in human immunodeficiency virus-infected children receiving combination therapy. Antimicrob Agents Chemother 2000; 44: 1029–34

    Article  PubMed  CAS  Google Scholar 

  66. Stahle L, Martin C, Svensson JO, et al. Indinavir in cerebrospinal fluid of HIV-1-infected patients [letter]. Lancet 1997; 350: 1823

    Article  PubMed  CAS  Google Scholar 

  67. Collier AC, Marra C, Coombs RW, et al. Cerebrospinal fluid (CSF) indinavir (IDV) and HIV RNA levels in patients on chronic indinavir therapy [abstract no. 22]. 35th Annual Meeting of the Infectious Diseases Society of America; 1997 Sep 13–16; San Francisco, 75

  68. Martin C, Sonnerborg A, Svensson JO, et al. Indinavir-based treatment of HIV-1 infected patients: efficacy in the central nervous system. AIDS 1999; 13: 1227–32

    Article  PubMed  CAS  Google Scholar 

  69. Zhou XJ, Havlir DV, Richman DD, et al. Plasma population pharmacokinetics and penetration into cerebrospinal fluid of indinavir in combination with zidovudine and lamivudine in HIV-1-infected patients. AIDS 2000; 14: 2869–76

    Article  PubMed  CAS  Google Scholar 

  70. Brinkman K, Kroon F, Hugen PW, et al. Therapeutic concentrations of indinavir in cerebrospinal fluid of HIV-1-infected patients [letter]. AIDS 1998; 12: 537

    Article  PubMed  CAS  Google Scholar 

  71. Gendelman HE, Zheng J, Coulter CL, et al. Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis 1998; 178: 1000–7

    Article  PubMed  CAS  Google Scholar 

  72. van Praag RM, Weverling GJ, Portegies P, et al. Enhanced penetration of indinavir in cerebrospinal fluid and semen after the addition of low-dose ritonavir. AIDS 2000; 14: 1187–94

    Article  PubMed  Google Scholar 

  73. Letendre SL, Caparelli E, Ellis RJ, et al. Levels of serum and cerebrospinal fluid (CSF) indinavir (IDV) and HIV-infected individuals [abstract no. 407]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31-Feb 4; Chicago. Alexandria (VA): Foundation for Retrovirology and Human Health, 1999: 144

    Google Scholar 

  74. Polis M, Yoder C, Mican J, et al. More than 2 months of an aggressive 4-drug antiretroviral regimen is required to suppress CSF HIV viral burden in previously antiretroviral naive patients [abstract no. 404]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31-Feb 4; Chicago. Alexandria (VA): Foundation for Retrovirology and Human Health, 1999: 143

    Google Scholar 

  75. Aweeka F, Jayewardene A, Staprans S, et al. Failure to detect nelfinavir in the cerebrospinal fluid of HIV-1-infected patients with and without AIDS dementia complex. J Acquir Immune Defic Syndr Hum Retrovirol 1999; 20: 39–43

    Article  PubMed  CAS  Google Scholar 

  76. Murphy R, Currier J, Gerber J, et al. Antiviral activity and pharmacokinetics of amprenavir with or without zidovudine/ 3TC in the cerebral spinal fluid of HIV-infected adults [abstract no. 314]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 30-Feb 2; San Francisco. Alexandria (VA): Foundation for Retrovirology and Human Health, 2000: 135

    Google Scholar 

  77. Moyle GJ, Sadler M, Buss N. Plasma and cerebrospinal fluid saquinavir concentrations in patients receiving combination antiretroviral therapy. Clin Infect Dis 1999; 28: 403–4

    Article  PubMed  CAS  Google Scholar 

  78. Cameron DW, Japour AJ, Xu Y, et al. Ritonavir and saquinavir combination therapy for the treatment of HIV infection. AIDS 1999; 13: 213–24

    Article  PubMed  CAS  Google Scholar 

  79. Sacktor NC, Lyles RH, Skolasky RL, et al. Combination antiretroviral therapy improves psychomotor speed performance in HIV-seropositive homosexual men: Multicenter AIDS Cohort Study (MACS). Neurology 1999; 52: 1640–7

    Article  PubMed  CAS  Google Scholar 

  80. Sacktor NC, Skolasky RL, Lyles RH, et al. Improvement in HIV-associated motor slowing after antiretroviral therapy including protease inhibitors. J Neurovirol 2000; 6: 84–8

    Article  PubMed  CAS  Google Scholar 

  81. Filippi CG, Sze G, Farber SJ, et al. Regression of HIV encephalopathy and basal ganglia signal intensity abnormality at MR imaging in patients with AIDS after the initiation of protease inhibitor therapy. Radiology 1998; 206: 491–8

    PubMed  CAS  Google Scholar 

  82. Tepper VJ, Farley JJ, Rothman MI, et al. Neurodevelopmental/ neuroradiologic recovery of a child infected with HIV after treatment with combination antiretroviral therapy using the HIV-specific protease inhibitor ritonavir [letter]. Pediatrics 1998; 101: E7

    Article  PubMed  CAS  Google Scholar 

  83. Molla A, Korneyeva M, Gao Q, et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med 1996; 2: 760–6

    Article  PubMed  CAS  Google Scholar 

  84. Garcia F, Niebla G, Romeu J, et al. Cerebrospinal fluid HIV-1 RNA levels in asymptomatic patients with early stage chronic HIV-1 infection: support for the hypothesis of local virus replication. AIDS 1999; 13: 1491–6

    Article  PubMed  CAS  Google Scholar 

  85. Cunningham PH, Smith DG, Satchell C, et al. Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS 2000; 14: 1949–54

    Article  PubMed  CAS  Google Scholar 

  86. Venturi GCM, Romano L, Corsi P, et al. Antiretroviral resistance mutations in human immunodeficiency virus type 1 reverse transcriptase and protease from paired cerebrospinal fluid and plasma samples. J Infect Dis 2000; 181: 740–5

    Article  PubMed  CAS  Google Scholar 

  87. Anderson BD, Morgan ME, Singhal D. Enhanced oral bioavailability of DDI after administration of 6-Cl-ddP, an adenosine deaminase-activated prodrug, to chronically catheterized rats. Pharm Res 1995; 12: 1126–33

    Article  PubMed  CAS  Google Scholar 

  88. Sawchuk RJ, Hedaya MA. Modeling the enhanced uptake of zidovudine (AZT) into cerebrospinal fluid. 1: effect of probenecid. Pharm Res 1990; 7: 332–8

    Article  PubMed  CAS  Google Scholar 

  89. Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100: 2430–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors received grant support (R01 AI33835 and UO1 AI41089) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courtney V. Fletcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynn, H.E., Brundage, R.C. & Fletcher, C.V. Clinical Implications of CNS Penetration of Antiretroviral Drugs. Mol Diag Ther 16, 595–609 (2002). https://doi.org/10.2165/00023210-200216090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200216090-00002

Keywords

Navigation