Skip to main content
Log in

Serotonin 5-HT1B/1D Receptor Agonists in Migraine

Comparative Pharmacology and Its Therapeutic Implications

  • Pharmacology and Pathophysiology
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The development and clinical use of the serotonin 5-HT1 receptor agonists, collectively known as the ‘triptans’, has ushered in a new age for clinicians treating patients with migraine, as well as a new era for those who respond to the medicines. The triptans that are currently in use (sumatriptan, naratriptan, rizatriptan and zolmitriptan) and those in development [almotriptan, eletriptan and frovatriptan (SB-209509, VML-251)] all share a common pharmacology of 5-HT1B/1D receptor agonist activity.

Administration of a triptan during an acute migraine is aimed, via an interruption of the pathophysiology of this disorder, at rapid and well tolerated relief of headache and associated symptoms of migraine. Migraine probably involves a combination of cranial vasodilatation, with peripheral trigeminal nerve activation and consequent excitation of trigeminal neurons within the caudal brainstem and upper cervical spinal cord (the trigeminocervical complex). Triptans may act by constricting cranial vessels through 5-HT1B receptors, by inhibiting peripheral trigeminal nerve afferents that innervate the vessels and pain-producing dura mater through 5-HT1D receptors, or by inhibiting central trigeminal neuronal traffic through 5-HT1D receptors, or by a combination of these mechanisms. Peripheral neuronal inhibition is likely to involve inhibition of calcitonin generelated peptide (CGRP) release and perhaps to some degree inhibition of a trigeminally driven inflammatory process.

Some aspects of the pharmacokinetics of the various triptans, such as the relationship between time to reach peak plasma concentrations and half-lives and clinical efficacy, may reveal information about the fundamental processes at work in acute migraine. The triptans have been a source of considerable interest because they have provided important clues to the basic pathophysiology of migraine and point to an important role for the CNS in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goadsby PJ. A triptan too far. J Neurol Neurosurg Psychiatry 1998; 64: 143–7

    Article  PubMed  CAS  Google Scholar 

  2. Sicuteri F, Testi A, Anselmi B. Biochemical investigations in headache: increase in hydroxyindoleacetic acid excretion during migraine attacks. Int Arch Allergy 1961; 19: 55–8

    Article  CAS  Google Scholar 

  3. Curran DA, Hinterberger H, Lance JW. Total plasma serotonin, 5-hydroxyindoleacetic acid and p-hydroxy-m-methoxymandelic acid excretion in normal and migrainous subjects. Brain 1965; 88: 997–1010

    Article  PubMed  CAS  Google Scholar 

  4. Anthony M, Hinterberger H, Lance JW. Plasma serotonin in migraine and stress. Arch Neurol 1967; 16: 544–52

    Article  PubMed  CAS  Google Scholar 

  5. Kimball RW, Friedman AP, Vallejo E. Effect of serotonin in migraine patients. Neurology 1960; 10: 107–11

    Article  PubMed  CAS  Google Scholar 

  6. Lance JW, Anthony M, Hinterberger H. The control of cranial arteries by humoral mechanisms and its relation to the migraine syndrome. Headache 1967; 7: 93–102

    Article  PubMed  CAS  Google Scholar 

  7. Hoyer D, Clarke DE, Fozard JR, et al. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 1994; 46: 157–203

    PubMed  CAS  Google Scholar 

  8. Jasper JR, Kosaka A, To ZP, et al. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor [h5-HT7(b)].Br J Pharmacol 1997; 122:126–32

    Article  PubMed  CAS  Google Scholar 

  9. Hartig PR, Hoyer D, Humphrey PPA, et al. Alignment of receptor nomenclature with the human genome: classification of 5HT-1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 1996; 17: 103–5

    Article  PubMed  CAS  Google Scholar 

  10. Phebus LA, Johnson KW, Zgombick JM, et al. Characterization of LY334370 as a pharmacological tool to study 5HT1F receptors — binding affinities, brain penetration and activity in the neurogenic durai inflammation model of migraine. Life Sci 1997; 61: 2117–26

    Article  PubMed  CAS  Google Scholar 

  11. Humphrey PPA, Feniuk W, Marriott AS, et al. Preclinical studies on the anti-migraine drug, sumatriptan. Eur Neurol 1991; 31: 282–90

    Article  PubMed  CAS  Google Scholar 

  12. Bou J, Domenech T, Gras J, et al. Pharmacological profile of almotriptan, a novel antimigraine agent [abstract]. Cephalalgia 1997; 17: 421–2

    Google Scholar 

  13. Gupta P, Scatchard J, Shepperson N, et al. In vitro pharmacology of eletriptan (UK-116,044), a potent partial agonist at the ‘5HT1D-Iike’ receptor in the dog saphenous vein [abstract]. Cephalalgia 1996; 16: 386

    Google Scholar 

  14. Connor HE, Feniuk W, Beattie DT, et al. Naratriptan: biological profile in animal models relevant to migraine. Cephalalgia 1997; 17: 145–52

    Article  PubMed  CAS  Google Scholar 

  15. Beer M, Middlemiss D, Stanton J, et al. In vitro pharmacological profile of the novel 5HT1D receptor agonist MK-462 [abstract]. Cephalalgia 1995; 15Suppl. 14: 203

    Google Scholar 

  16. Martin GR, Robertson AD, MacLennan SJ, et al. Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan). Br J Pharmacol 1997; 121: 157–64

    Article  PubMed  CAS  Google Scholar 

  17. Brown AM, Parsons AA, Raval P, et al. SB209509 (VML251), a potent constrictor of rabbit basilar artery with high affinity and selectivity for human 5-HT1D receptors [abstract]. Br J Pharmacol 1996; 119: 11OP

    Google Scholar 

  18. Martin GR. Serotonin receptor involvement in the pathogenesis and treatment of migraine. In: Goadsby PJ, Silberstein SD, editors. Headache. New York: Butterworth-Heinemann, 1997

    Google Scholar 

  19. Fozard JR, Gray JA. 5-HT1C receptor activation: a key step in the initiation of migraine? Trends Pharmacol Sci 1989; 10: 307–9

    Article  PubMed  CAS  Google Scholar 

  20. Kalkman HO. Is migraine prophylactic activity caused by 5-HT2B or 5-HT2C receptor blockade? Life Sci 1994; 54: 641–4

    Article  PubMed  CAS  Google Scholar 

  21. Goadsby PJ. How do the currently used prophylactic agents work in migraine? Cephalalgia 1997; 17: 85–92

    Article  PubMed  CAS  Google Scholar 

  22. Berde B, Schild HO. Ergot alkaloids and related compounds. In: Born GVR, Eichler O, Farah A, et al., editors. Handbook of experimental pharmacology. Vol. 49. Berlin: Springer-Verlag, 1978

    Google Scholar 

  23. Penfield W. Operative treatment of migraine and observations on the mechanism of vascular pain. Trans Am Acad Ophthalmol Otolaryngol 1932; III: 1–16

    Google Scholar 

  24. Penfield W, McNaughton FL. Durai headache and the innervation of the dura mater. Arch Neurol Psychiatry 1940; 44: 43–75

    Article  Google Scholar 

  25. Goadsby PJ, Silberstein SD, editors. Headache. In: Blue books in practical neurology. New York: Butterworth-Heinemann, 1997

    Google Scholar 

  26. Bax WA, Heuven-Nolsen DV, Simoons ML, et al. 5-Hydroxytryptamine-induced contractions of the human isolated saphenous vein: involvement of 5-HT2 and 5-HT1D-like receptors, and a comparison with grafted veins. Naunyn-Schmiedebergs Arch Pharmakol 1992; 345: 500–8

    Article  CAS  Google Scholar 

  27. Longmore J, Shaw D, Smith D, et al. Differential distribution of 5HT1D- and 5HT1B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs. Cephalalgia 1997; 17: 833–42

    Article  PubMed  CAS  Google Scholar 

  28. Spira PJ, Mylecharane EJ, Misbach J, et al. Internal and external carotid vascular responses to vasoactive agents in the monkey. Neurology 1978; 28: 162–73

    Article  PubMed  CAS  Google Scholar 

  29. Perren MJ, Feniuk W, Humphrey PPA. Vascular 5-HT1-like receptors that mediate contraction of the dog isolated saphenous vein and carotid arterial vasoconstriction in anaesthetised dogs are not of the 5-HT1A or 5-HT1D subtype. Br J Pharmacol 1991; 102: 191–7

    Article  PubMed  CAS  Google Scholar 

  30. Friberg L, Olesen J, Iversen HK, et al. Migraine pain associated with middle cerebral artery dilatation — reversal by sumatriptan. Lancet 1991; 338: 13–7

    Article  PubMed  CAS  Google Scholar 

  31. Connor HE, Stubbs CM, Feniuk W, et al. Effect of sumatriptan, a selective 5-HT1-like receptor agonist, on pial vessel diameter in anaesthetised cats. J Cereb Blood Flow Metab 1992; 12: 514–9

    Article  PubMed  CAS  Google Scholar 

  32. Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterising cerebrovascular and neuropeptide changes seen in man and cat. Ann Neurol 1993; 33: 48–56

    Article  PubMed  CAS  Google Scholar 

  33. Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med 1995; 1: 658–60

    Article  PubMed  CAS  Google Scholar 

  34. Feniuk W, Humphrey PPA, Perren MJ. The selective carotid arterial vasoconstrictor action of GR43175 in anaesthetised dogs. Br J Pharmacol 1989; 96: 83–90

    Article  PubMed  CAS  Google Scholar 

  35. Gupta P, Brown D, Butler P, et al. Preclinical in. vivo pharmacology of eletriptan (UK 116,044): a potent and selective partial agonist at the 5HT1D-Iike receptor [abstract]. Cephalalgia 1996; 16: 386

    Google Scholar 

  36. Williamson DJ, Shepheard SL, Hill RG, et al. The novel anti-migraine agent rizatriptan inhibits neurogenic durai vasodilatation and extravasation. Eur J Pharmacol 1997; 328: 61–4

    Article  PubMed  CAS  Google Scholar 

  37. Parsons AA, Parker SG, Raval P, et al. Comparison of the cardiovascular effects of the novel 5-HT1B/1D receptor agonist, SB 209509 (VML 251), and sumatriptan in dogs. J Cardiovasc Pharmacol 1996; 30: 136–41

    Article  Google Scholar 

  38. Saxena PR. 5-HT in migraine — an introduction. J Neurol 1991; 238Suppl. 1: S36–7

    Article  PubMed  Google Scholar 

  39. Villalon CM, Bom AH, Boer MOD, et al. Effects of S9977 and dihydroergotamine in an animal experimental model for migraine. Pharmacol Res 1992; 25: 125–37

    Article  PubMed  CAS  Google Scholar 

  40. De Vries P, Apaydin S, Villalon CM, et al. Interactions of GR127935, a 5-HT(1B/D) receptor ligand, with functional 5-HT receptors. Naunyn Schmiedebergs Arch Pharmakol 1997; 355(4): 423–30

    Article  Google Scholar 

  41. Den Boer MO, Villalon CM, Saxena PR. 5-HT1-like receptors mediate changes in porcine carotid hemodynamics: are 5-HT1D receptors involved? Naunyn-Schmiedebergs Arch Pharmacol 1992; 345: 509–15

    Google Scholar 

  42. Moskowitz MA. Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 1992; 13:307–11

    Article  PubMed  CAS  Google Scholar 

  43. Markowitz S, Saito K, Moskowitz MA. Neurogenically mediated leakage of plasma proteins occurs from blood vessels in dura mater but not brain. J Neurosci 1987; 7: 4129–36

    PubMed  CAS  Google Scholar 

  44. Dimitriadou V, Buzzi MG, Theoharides TC, et al. Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. Neuroscience 1992; 48: 187–203

    Article  PubMed  CAS  Google Scholar 

  45. Buzzi MG, Sakas DE, Moskowitz MA. Indomethacin and acetylsalicylic acid block neurogenic plasma protein extravasation in rat dura mater. Eur J Pharmacol 1989; 165: 251–8

    Article  PubMed  CAS  Google Scholar 

  46. Buzzi MG, Moskowitz MA. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 1990; 99: 202–6

    Article  PubMed  CAS  Google Scholar 

  47. Lee WK, Limmroth V, Ayata C, et al. Peripheral GABA-A receptor mediated effects of sodium valproate on durai plasma protein extravasation to substance P and trigeminal stimulation. Br J Pharmacol 1995; 116: 1661–7

    Article  PubMed  CAS  Google Scholar 

  48. Limmroth V, Lee WS, Cutrer FM, et al. GABAA-receptor-mediated effects of progesterone, its ring-A-reduced metabolites and synthetic neuroactive steroids on neurogenic oedema in the rat meninges. Br J Pharmacol 1996; 117: 99–104

    Article  PubMed  CAS  Google Scholar 

  49. Yu X-J, Waeber C, Castanon N, et al. 5-carboxamido-tryptamine, CP-122,288 and dihydroergotamine but not sumatriptan, CP-93,129, and serotonin-5-O-carboxymethyl-glycyl-tyrosinamide block durai plasma protein extravasation in knockout mice that lack 5-hydroxytryptamine1B receptors. Mol Pharmacol 1996; 49: 761–5

    PubMed  CAS  Google Scholar 

  50. Lee WS, Moskowitz MA. Conformationally restricted sumatriptan analogues, CP-122,288 and CP-122,638, exhibit enhanced potency against neurogenic inflammation in dura mater. Brain Res 1993; 626: 303–5

    Article  PubMed  CAS  Google Scholar 

  51. Gupta P, Brown D, Butler P, et al. The in vivo pharmacological profile of a 5-HT1 receptor agonist, CP122,288, a selective inhibitor of neurogenic inflammation. Br J Pharmacol 1995; 116: 2385–90

    Article  PubMed  CAS  Google Scholar 

  52. Roon K, Diener HC, Ellis P, et al. CP-122,288 blocks neurogenic inflammation, but is not effective in aborting migraine attacks: results of two controlled clinical studies [abstract]. Cephalalgia 1997; 17: 245

    Google Scholar 

  53. Brandli P, Loffler B-M, Breu V, et al. Role of endothelin in mediating neurogenic plasma extravasation in rat dura mater. Pain 1996; 64: 315–22

    Article  PubMed  CAS  Google Scholar 

  54. Lee WS, Moussaoui SM, Moskowitz MA. Blockade by oral or parenteral RPR100893 (a non-peptide NK1 receptor antagonist) of neurogenic plasma protein extravasation in guineapig dura mater and conjunctiva. Br J Pharmacol 1994; 112: 920–4

    Article  PubMed  CAS  Google Scholar 

  55. May A, Gijsman HJ, Wallnoefer A, et al. Endothelin antagonist bosentan blocks neurogenic inflammation, but is not effective in aborting migraine attacks. Pain 1996; 67: 375–8

    Article  PubMed  CAS  Google Scholar 

  56. Goldstein DJ, Wang O, Saper JR, et al. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 1997; 17: 785–90

    Article  PubMed  CAS  Google Scholar 

  57. Goadsby PJ, Hoskin KL, Knight YE.SubstancePblockade with the potent and centrally acting antagonist GR205171 does not effect central trigeminal activity with superior sagittal sinus stimulation. Neuroscience 1998; 86: 337–43

    Article  PubMed  CAS  Google Scholar 

  58. Hoskin KL, Goadsby PJ. CP122,288 has no effect on c-fos expression in the trigeminal nucleus caudalis after superior sagittal sinus stimulation [abstract]. Cephalalgia 1997; 17: 402

    Google Scholar 

  59. May A, Shepheard S, Wessing A, et al. Retinal plasma extravasation can be evoked by trigeminal stimulation in rat but does not occur during migraine attacks. Brain 1998; 121: 1231–7

    Article  PubMed  Google Scholar 

  60. Saxena PR, De Vries P, Wang W, et al. Effects of avitriptan, a new 5-HT1B/1D receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential. Naunyn Schmiedebergs Arch Pharmakol 1997; 355(2): 295–302

    Article  CAS  Google Scholar 

  61. Yocca FD, Buchanan I, Gylys IA, et al. The preclinical pharmacological profile of the putative antimigraine agent BMS-180048, a structurally novel 5HT1D agonist [abstract]. Cephalalgia 1995; 15Suppl. 14: 174

    Google Scholar 

  62. Couch JR, Saper J, Meloche JP. Treatment of migraine with BMS180048: response at 2 hours. Headache 1996; 36: 523–30

    Article  PubMed  Google Scholar 

  63. Yocca FD, Gylys JA, Smith DW, et al. BMS-181885: a clinically effective migraine abortive with peripherovascular and neuronal 5HT1D antagonist properties [abstract]. Cephalalgia 1997; 17: 404

    Google Scholar 

  64. Knight YE, Edvinsson L, Goadsby PJ. Blockade of release of CGRP after superior sagittal sinus stimulation in cat: a comparison of avitriptan and CP122,288 [abstract]. Cephalalgia 1997; 17: 248

    Google Scholar 

  65. Goadsby PJ, Edvinsson L. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache 1994; 34: 394–9

    Article  PubMed  CAS  Google Scholar 

  66. Adham N, Kao H-T, Schechter LE, et al. Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci USA 1993; 90: 408–12

    Article  PubMed  CAS  Google Scholar 

  67. Branchek T, Archa JE. Recent advances in migraine therapy. In: Robertson DW, editor. Annual reports in medicinal chemistry: central nervous system disease. San Diego: Academic Press, 1997: 1–10

    Google Scholar 

  68. Castro ME, Pascual J, Romon T, et al. Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brainstem and spinal cord. Neuropharmacology 1997; 36: 535–42

    Article  PubMed  CAS  Google Scholar 

  69. Pascual J, Arco Cd, Romon T, et al. [3H]Sumatriptan binding sites in human brain: regional-dependent labelling of 5HT1D and 5HT1F receptors. Eur J Pharmacol 1996; 295: 271–4

    Article  PubMed  CAS  Google Scholar 

  70. Waeber C, Moskowitz MA. [3H]Sumatriptan labels both 5-HT1D and 5HT-1F receptor bindings sites in the guinea pig brain: an autoradiographic study. Naunyn Schmiedebergs Arch Pharmakol 1995; 352: 263–75

    Article  CAS  Google Scholar 

  71. Goldstein J, Dahlof CGH, Diener H-C, et al. Alniditan in the acute treatment of migraine attacks: a subcutaneous dose-finding study. Cephalalgia 1996; 16: 497–502

    Article  PubMed  CAS  Google Scholar 

  72. Limmroth V, Wermelskirchen D, Tegtmeier F, et al. R91274 (alniditan) blocks neurogenic inflammation in the rat meninges more effectively than sumatriptan by activation of 5HT1D-receptors [abstract]. Neurology 1997; 48: A69

    Google Scholar 

  73. Leysen JE, Gommeren W, Heylen L, et al. Alniditan, a new 5-hydroxytryptamine1D agonist and migraine-abortive agent: ligand-binding properties of human 5-hydroxytryptaminelDa, human 5-hydroxytryptamine1Db, and calf 5-hydroxytryptamine1D receptors investigated with [3H]-5-hydroxytryptamine and [3H]alniditan. Mol Pharmacol 1996; 50: 1567–80

    PubMed  CAS  Google Scholar 

  74. Edvinsson L, Goadsby PJ. Neuropeptides in headache. Eur J Neurol 1998; 5: 329–41

    Article  Google Scholar 

  75. Goadsby PJ, Sercombe R. Neurogenic regulation of cerebral blood flow: extrinsic neural control. In: Mraovitch S, Sercombe R, editors. Neurophysiological basis of cerebral blood flow control: an introduction. Paris: John Libbey and Company, 1996: 285–322

    Google Scholar 

  76. Goadsby PJ, Edvinsson L. Regulation of cerebral blood flow by the parasympathetic nervous system. In: Welch KMA, Caplan L, Reis DJ, et al., editors. Primer of cerebrovascular diseases. San Diego: Academic Press, 1997: 63–6

    Chapter  Google Scholar 

  77. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of man and the cat during activation of the trigeminovascular system. Ann Neurol 1988; 23: 193–6

    Article  PubMed  CAS  Google Scholar 

  78. Buzzi MG, Moskowitz MA, Shimizu T, et al. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 1991; 30: 1193–200

    Article  PubMed  CAS  Google Scholar 

  79. Zagami AS, Goadsby PJ, Edvinsson L. Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 1990; 16: 69–75

    Article  PubMed  CAS  Google Scholar 

  80. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990; 28: 183–7

    Article  PubMed  CAS  Google Scholar 

  81. Gallai V, Sarchielli P, Floridi A, et al. Vasoactive peptides levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 1995; 15: 384–90

    PubMed  CAS  Google Scholar 

  82. Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Brain 1994; 117: 427–34

    Article  PubMed  Google Scholar 

  83. Fanciullacci M, Alessandri M, Figini M, et al. Increases in plasma calcitonin gene-related peptide from extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 1995; 60: 119–23

    Article  PubMed  CAS  Google Scholar 

  84. Diener HC. Substance-P antagonist RPR100893-201 is not effective in human migraine attacks. In: Olesen J, Tfelt-Hansen P, editors. Proceedings of the VIth International Headache Seminar. New York: Lippincott-Raven, 1996

    Google Scholar 

  85. Goadsby PJ, Duckworth JW. Effect of stimulation of trigeminal ganglion on regional cerebral blood flow in cats. Am J Physiol 1987; 253 (2 Pt 2): R270–4

    PubMed  CAS  Google Scholar 

  86. Goadsby PJ, Lipton RB. A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic features, including new cases. Brain 1997; 120: 193–209

    Article  PubMed  Google Scholar 

  87. Goadsby PJ, Zagami AS, Lambert GA. Neural processing of craniovascular pain: a synthesis of the central structures involved in migraine. Headache 1991; 31: 365–71

    Article  PubMed  CAS  Google Scholar 

  88. Wolff HG. Headache and other head pain. New York: Oxford University Press, 1963

    Google Scholar 

  89. Kaube H, Keay K, Hoskin KL, et al. Expression of c-fos-like immunoreactivity in the trigeminal nucleus caudalis and high cervical cord following stimulation of the sagittal sinus in the cat. Brain Res 1993; 629: 95–102

    Article  PubMed  CAS  Google Scholar 

  90. Kaube H, Hoskin KL, Goadsby PJ. Activation of the trigeminovascular system by mechanical distension of the superior sagittal sinus in the cat. Cephalalgia 1992; 12: 133–6

    Article  PubMed  CAS  Google Scholar 

  91. Hoskin KL, Kaube H, Goadsby PJ. Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain 1996; 119: 1419–28

    Article  PubMed  Google Scholar 

  92. Goadsby PJ, Hoskin KL. The distribution of trigeminovascular afferents in the non-human primate brain macaca nemestrina: a c-fos immunocytochemical study. J Anat 1997; 190: 367–75

    Article  PubMed  Google Scholar 

  93. Goadsby PJ, Zagami AS. Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain 1991; 114: 1001–11

    Article  PubMed  Google Scholar 

  94. Goadsby PJ, Knight YE, Hoskin KL. Processing of occipital pain in the caudal trigeminal nucleus: referred pain in primary headache [abstract]. Cephalalgia 1997; 17: 381

    Article  Google Scholar 

  95. Goadsby PJ, Gundlach AL. Localization of [3H]-dihydroergotamine binding sites in the cat central nervous system: relevance to migraine. Ann Neurol 1991; 29: 91–4

    Article  PubMed  CAS  Google Scholar 

  96. Mills A, Martin GR. Autoradiographic mapping of [3H]-sumatriptan binding in cat brain stem and spinal cord. Eur J Pharmacol 1995; 280: 175–8

    Article  PubMed  CAS  Google Scholar 

  97. Goadsby PJ, Knight YE. Direct evidence for central sites of action of zolmitriptan (311C90): an autoradiographic study in cat. Cephalalgia 1997; 17: 153–8

    Article  PubMed  CAS  Google Scholar 

  98. Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine: a c-Fos and electrophysiology study. Brain 1996; 119: 249–56

    Article  PubMed  Google Scholar 

  99. Knight YE, Goadsby PJ. Naratriptan inhibits central trigeminal activity by a 5HT1B/1D receptor [abstract]. Cephalalgia 1997; 17: 403

    Google Scholar 

  100. Cumberbatch MJ, Hill RG, Hargreaves RJ. Rizatriptan has central antinociceptive effects against durally evoked responses. Eur J Pharmacol 1997; 328: 37–40

    Article  PubMed  CAS  Google Scholar 

  101. Goadsby PJ, Hoskin KL. Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)-1-D receptor agonist zolmitriptan (311C90): are brain stem sites a therapeutic target in migraine? Pain 1996; 67: 355–9

    Article  PubMed  CAS  Google Scholar 

  102. Kaube H, Hoskin KL, Goadsby PJ. Sumatriptan inhibits central trigeminal neurons only after blood-brain barrier disruption. Br J Pharmacol 1993; 109: 788–92

    Article  PubMed  CAS  Google Scholar 

  103. Shepheard SL, Williamson DJ, Williams J, et al. Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in the dura mater and c-fos mRNA expression in the trigeminal nucleus caudalis of rats. Neuropharmacology 1995; 34: 255–61

    Article  PubMed  CAS  Google Scholar 

  104. Bates D, Ashford E, Dawson R, et al. Subcutaneous sumatriptan during the migraine aura. Neurology 1994; 44: 1587–92

    Article  PubMed  CAS  Google Scholar 

  105. Goadsby PJ, Hoskin KL. Serotonin inhibits trigeminal nucleus activity evoked by craniovascular stimulation through a 5-HT1B/1D receptor: a central action in migraine? Ann Neurol 1998; 43: 711–8

    Article  PubMed  CAS  Google Scholar 

  106. Clitherow JW, Scopes DI, Skingle M, et al. Evolution of a novel series of [(N,N-dimethylamino) propyl]- and peperazinyl-benzanilides as the first selective 5-HT1D antagonists. J Med Chem 1994; 37: 2253–7

    Article  PubMed  CAS  Google Scholar 

  107. Storer RJ, Goadsby PJ. Microiontophoretic application of serotonin (5HT)-1B/1D agonists inhibits trigeminal cell firing in the cat. Brain 1997; 120: 2171–7

    Article  PubMed  Google Scholar 

  108. Proletti-Cecchini P, Afra J, Schoenen J. Intensity dependence of the cortical auditory evoked potentials as a surrogate marker of central nervous system serotonin transmission in man: demonstration of a central effect for the 5HT1B/1D agonist zolmitriptan (311C90, Zomig). Cephalalgia 1997; 17: 849–54

    Article  Google Scholar 

  109. Wang W, Timsit-Berthier M, Schoenen J. Intensity dependence of the auditory cortical evoked potentials is pronounced in migraine: an indication of cortical potentiation and low serotonergic transmission? Neurology 1996; 46: 1404–9

    Article  PubMed  CAS  Google Scholar 

  110. Fowler PA, Lacey LF, Thomas M, et al. The clinical pharmacology, pharmacokinetics and metabolism of sumatriptan. Eur Neurol 1991; 31: 291–4

    Article  PubMed  CAS  Google Scholar 

  111. Rance D, Clear N, Dallman L, et al. Physicochemical comparison of eletriptan and other 5-HT1D-like agonists as a predictor of oral absorption potential [abstract]. Headache 1997; 37: 328

    Google Scholar 

  112. Cabarrocas X, Salva M. Pharmacokinetic and metabolic data on almotriptan, a new antimigraine drug [abstract]. Cephalalgia 1997; 17: 421

    Google Scholar 

  113. Milton KA, Allen MJ, Abel S, et al. The safety, tolerability, pharmacokinetics and pharmacodynamics of oral and intravenous eletriptan, a potent and selective ‘5HT1D-like’ receptor partial agonist [abstract]. Cephalalgia 1997; 17: 44

    Google Scholar 

  114. Kempsford RD, Baille P, Fuseau E. Oral naratriptan tablets (2.5mg-10mg) exhibit dose-proportional pharmacokinetics [abstract]. Cephalalgia 1997; 17: 408

    Google Scholar 

  115. Seaber E, On N, Phillips S, et al. The tolerability and pharmacokinetics of the novel antimigraine compound 311C90 in healthy male volunteers. Br J Clin Pharmacol 1996; 41(2): 141–7

    Article  PubMed  CAS  Google Scholar 

  116. Morgan P, Rance D, James G, et al. Comparative absorption and elimination of eletriptan in rat, dog and human. Cephalalgia 1997; 17: 414

    Google Scholar 

  117. Thomsen LL, Dixon R, Lassen LH, et al. 311C90 (zolmitriptan), a novel centrally and peripheral acting oral 5-hydroxytryptamine-1D agonist: a comparison of its absorption during a migraine attack and in a migraine-free period. Cephalalgia 1996; 16(4): 270–5

    Article  PubMed  CAS  Google Scholar 

  118. Fuseau E, Baille P, Kempsford RD. A study to determine the absolute oral bioavailability of naratriptan [abstract]. Cephalalgia 1997; 17: 417

    Google Scholar 

  119. Palmer KJ, Spencer CM. Zolmitriptan. CNS Drugs 1997; 7: 468–78

    Article  CAS  Google Scholar 

  120. Goadsby PJ. Is a central site of action of acute antimigraine drugs essential? Cephalalgia 1997; 17Suppl. 17: 10–1

    PubMed  Google Scholar 

  121. Kramer MS, Matzura-Wolfe D, Polis A, et al. A placebo-controlled crossover study of rizatriptan in the treatment of multiple migraine attacks. Neurology 1998; 51: 773–81

    Article  PubMed  CAS  Google Scholar 

  122. Visser WH, Vriend RHMd, Jaspers NMWH, et al. Sumatriptan in clinical practice. Neurology 1996; 47: 46–51

    Article  PubMed  CAS  Google Scholar 

  123. Visser WH, Jaspers NM, de Vriend RH, et al. Risk factors for headache recurrence after sumatriptan: a study in 366 migraine patients [see comments]. Cephalalgia 1996; 16(4): 264–9

    Article  PubMed  CAS  Google Scholar 

  124. Jackson NC. Acomparison of oral eletriptan (UK-116,044) (20–80mg) and oral sumatriptan (100mg) in the acute treatment of migraine. Cephalalgia 1996; 16: 368–9

    Google Scholar 

  125. Gijsman H, Kramer MS, Sargent J, et al. Double-blind, placebo-controlled, dose-finding study of rizatriptan (MK-462) in the acute treatment of migraine. Cephalalgia 1997; 17: 647–51

    Article  PubMed  CAS  Google Scholar 

  126. Visser WH, Lines CR, Reines SA. Dose-finding studies of rizatriptan (MK-462) in the acute treatment of migraine. Cephalalgia 1996; 16: 359–60

    Article  Google Scholar 

  127. Visser WH, Terwindt GM, Reines SA, et al. Rizatriptan vs sumatriptan in the acute treatment of migraine. Arch Neurol 1996; 53: 1132–7

    Article  PubMed  CAS  Google Scholar 

  128. Goadsby PJ. 311C90, a novel 5-HT1B/D agonist: the assessment of efficacy and tolerability in the acute treatment of migraine. Neurology 1997; 48(3): A86

    Article  Google Scholar 

  129. Goadsby PJ. Naratriptan in the treatment of acute migraine attacks. Prescriber 1997; 8: 89–97

    Google Scholar 

  130. Gobel H, Boswell D, Winter P, et al. A comparison of the efficacy, safety and tolerability of naratriptan and sumatriptan [abstract]. Cephalalgia 1997; 17: 426

    Google Scholar 

  131. Ryan R, Keywood C. A preliminary study of VML251 (SB209509) a novel 5HT1B/1D agonist for the treatment of acute migraine [abstract]. Cephalalgia 1997; 17: 418

    Google Scholar 

  132. Winner P, Ricalde O, Force BL, et al. A double-blind study of subcutaneous dihydroergotamine vs subcutaneous sumatriptan in the treatment of acute migraine. Arch Neurol 1996; 53: 180–4

    Article  PubMed  CAS  Google Scholar 

  133. Massiou H. A comparison of sumatriptan nasal spray and intranasal dihydroergotamine (DHE) in the acute treatment of migraine [abstract]. Funct Neurol 1996; 11(2/3): 151

    Google Scholar 

  134. Touchon J, Berlin L, Pilgrim AJ, et al. A comparison of subcutaneous sumatriptan and dihydroergotamine nasal spray in the acute treatment of migraine. Neurology 1996; 47: 361–5

    Article  PubMed  CAS  Google Scholar 

  135. Martin GR, Martin RS, Wood J. Long-acting 5-HT1D receptor agonist effects of dihydroergotamine. In: Olesen J, Moskowitz MA, editors. Experimental headache models. Philadelphia: Lippincott-Raven, 1995: 163–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Goadsby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goadsby, P.J. Serotonin 5-HT1B/1D Receptor Agonists in Migraine. Mol Diag Ther 10, 271–286 (1998). https://doi.org/10.2165/00023210-199810040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199810040-00005

Keywords

Navigation