Skip to main content
Log in

α2-Adrenoceptor Antagonists

A New Approach to Parkinson’s Disease?

  • Drug Therapy
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Postmortem studies have shown that noradrenergic neurotransmission is impaired in Parkinson’s disease. This abnormality may have functional importance because (α2-adrenoceptor antagonists, which increase central noradrenergic transmission, improve motor behaviour in various animal models of this disease.

Pilot clinical data suggest that (α2-antagonists may indeed have several potential indications in the treatment of Parkinson’s disease: (i) 3 recent placebocontrolled studies reported an improvement in motor scores following short term intravenous or long term oral administration of two different (α2-antagonists (idazoxan and efaroxan), suggesting that both drugs provide symptomatic benefit with regard to motor symptoms, especially rigidity and akinesia; (ii) an acute oral challenge with idazoxan reduced the severity of ‘peak-dose’ levodopa-induced dyskinesia, one of the most disabling complications of long term therapy with that drug, in a placebo-controlled study; (iii) biochemical and pharmacological experiments have suggested that levodopa-resistant parkinsonian symptoms, such as frozen gait, cognitive dysfunction, depressive state and dysautonomia, could be improved by enhancing central noradrenergic function; however, controlled clinical studies are necessary to evaluate the usefulness of (α2-adrenoceptor antagonists in these indications; and (iv) some preliminary experimental data support the hypothesis that noradrenergic mechanisms could be involved in the progression of Parkinson’s disease; thus, there is a rationale for testing the putative neuroprotective effects of (α2-adrenoceptor antagonists in this disorder.

It has yet to be determined whether the antiparkisonian effects of (α2-antagonists are due to a direct effect of noradrenaline (norepinephrine) on motor systems or to an indirect effect, by means of noradrenergic interactions with dopamine or other neurotransmitters controlling motor behaviour or via other mechanisms.

A careful evaluation of (α2-antagonists in the treatment of Parkinson’s disease must also consider their potential adverse effects, because these drugs possess cardiovascular and psychiatric properties which might compromise their risk-benefit ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hornykiewicz O. Brain neurotransmitter changes in Parkinson’s disease. In: Marsden CD, Fahn S, editors. Movement disorders. Vol 2. London; Butterworth, 1982; 41–58

    Google Scholar 

  2. Saint Cyr JA, Taylor AE, Lang AE. Neuropsychological and psychiatric side effects in the treatment of Parkinson’s disease. Neurology 1993; 43Suppl. 6: S47–52

    PubMed  CAS  Google Scholar 

  3. Chase TN, Mouradian MM, Engber TM. Motor response complications and the function of striatal efferent systems. Neurology 1993; 43Suppl. 6: S23–7

    PubMed  CAS  Google Scholar 

  4. Bonnet AM, Loria Y, Saint-Hilaire MH, et al. Does long-term aggravation of Parkinson’s disease result from non-dopaminergic lesions? Neurology 1997; 37: 1539–42

    Article  Google Scholar 

  5. Fahn S. Is levodopa toxic? Neurology 1996; 47Suppl. 3: S184–95

    Article  PubMed  CAS  Google Scholar 

  6. Montastruc JL, Rascol O, Senard JM. New directions in the drug treatment of Parkinson’s disease. Drugs Aging 1996; 9: 169–84

    Article  PubMed  CAS  Google Scholar 

  7. Colpaert FC, Degryse AD, Van Craenendonck H. Effects of an α2 antagonist in a 20-year-old Java monkey with MPTP-induced parkinsonian signs. Brain Res 1990; 26: 627–31

    Google Scholar 

  8. Peyro Saint Paul H, Rascol O, Blin O, et al. A pilot study of idazoxan, an alpha-2 antagonist, in Parkinson’s disease. First Congress of the European Association for Clinical Pharmacology and Therapeutics; 1995 Sep 27–30: Paris, 171

  9. Peyro Saint Paul H, Durif F, Pollak P, et al. Short term oral administration of idazoxan in mild stable parkinsonian patients treated with L-DOPA. First Congress of the European Association for Clinical Pharmacology and Therapeuthics; 1995 Sep 27–30: Paris, 172

  10. Ruzicka E; Ladure P, Roth J, et al. Efficacy and safety of efaroxan, an α2-adrenoceptor antagonist, in Parkinson’s disease: an oral short-term study. Mov Disord 1997; 12Suppl. 1: 463

    Google Scholar 

  11. Bylund D, Eikenberg DC, Hieble JP, et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 1994; 46: 121–36

    PubMed  CAS  Google Scholar 

  12. Ahlquist RP. A study of the adrenotopic receptors. Am J Physiol 1948; 153: 586–600

    PubMed  CAS  Google Scholar 

  13. Kaumann AT Four β-adrenoceptor subtypes in the mammalian heart. Trends Pharmacol Sci 1997; 18; 70–6

    Article  PubMed  CAS  Google Scholar 

  14. French N. α2-Adrenoceptors and I2 sites in the mammalian central nervous system. Pharmacol Ther 1995; 68: 175–208

    Article  PubMed  CAS  Google Scholar 

  15. MacDonald E, Scheinin M. Distribution and pharmacology of α2-adrenoceptors in the central nervous sytem. J Physiol Pharmacol 1995; 46: 241–58

    PubMed  CAS  Google Scholar 

  16. Marjamäki A, Iuomala K, Ala-Uotila S, et al. Use of recombinant human α2-adrenoceptors to characterize subtype selectivity of antagonist binding. Eur J Pharmacol 1993; 266: 219–26

    Google Scholar 

  17. MacKinnon A, Spedding M, Brown CM. α2-Adrenoceptors: more subtypes but fewer functional differences. Trends Pharmacol Sci 1994; 15: 119–23

    Article  PubMed  CAS  Google Scholar 

  18. Cedarbaum JM, Aghajanian GK. Catecholamine receptors on locus coeruleus neurones: pharmacological characterisation. Eur J Pharmacol 1977; 44: 375–85

    Article  PubMed  CAS  Google Scholar 

  19. Bousquet P. Imidazoline receptors: from basic concepts to recent developments. J Cardiovasc Pharmacol 1995; 26Suppl. 2: S1–6

    PubMed  CAS  Google Scholar 

  20. Parini A, Coupry I, Graham RM, et al. Characterization of an imidazoline/guanidinium receptive site distinct from the α2-adrenergic receptor. J Biol Chem 1989; 264: 11874–8

    PubMed  CAS  Google Scholar 

  21. Regunathan S, Reis DJ. Imidazoline receptors and their endogenous ligands. Ann Rev Pharmacol Toxicol 1996; 36: 511–44

    Article  CAS  Google Scholar 

  22. De Vos H, Convents A, De Keyser J, et al. Autoradiographic distribution of α2-adrenoceptors, NAIBS, and 5-HT1Arecep-tors in human brain using (3H)idazoxan and (3H)rauwolscine. Brain Res 1991; 566: 13–20

    Article  PubMed  Google Scholar 

  23. De Vos H, Bricca G, De Keyser J, et al. Imidazoline receptors, non adrenergic idazoxan binding sites and α2-adrenoceptors in the human central nervous system. Neuroscience 1994; 59: 589–98

    Article  PubMed  Google Scholar 

  24. Holmes PV, Crawley JN. Coexisting neurotransmitters in central noradrenergic neurons. In: Bloom FE, Kupfer DJ, editors. Psychophamacology: the fourth generation of progress. New York: Raven Press, 1995; 347–53

    Google Scholar 

  25. Perälä M, Hirvonen H, Kalimo H, et al. Differential expression of two α2-adrenergic receptor subtype mRNAs in human tissues. Mol Brain Res 1992; 16: 57–63

    Article  PubMed  Google Scholar 

  26. Ordway GA, Jaconetta SM, Halaris AE. Characterization of subtypes of alpha-2 adrenoceptors in the human brain. J Pharmacol Exp Ther 1993; 264: 967–76

    PubMed  CAS  Google Scholar 

  27. Gaspar P, Berger B, Febvret A, et al. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 1989; 279: 249–71

    Article  PubMed  CAS  Google Scholar 

  28. Gaspar P, Berger B, Alvarez C, et al. Catecholamine innervation of the septal area in man: immunocytochemical study using TH and DBH antibodies. J Comp Neurol 1985; 241: 12–33

    Article  PubMed  CAS  Google Scholar 

  29. Room P, Postema F, Korf J. Divergent axon collaterals of rat locus coeruleus neurons: demonstration by a fluorescent double-labeling technique. Brain Res 1981; 221: 219–30

    Article  PubMed  CAS  Google Scholar 

  30. Kish SJ, Kathleen SS, Rajput AH, et al. Cerebellar norepinephrine in patients with Parkinson’s disease and control subjects. Arch Neurol 1984; 41: 612–4

    Article  PubMed  CAS  Google Scholar 

  31. Ono H, Fukuda H. Pharmacology of descending noradrenergic systems in relation to motor function. Pharmacol Ther 1995; 68: 105–12

    Article  PubMed  CAS  Google Scholar 

  32. Brown MJ, Struthers AD, Burnin JM, et al. The physiological and pharmacological role of presynaptic α and β adrenoceptors in man. Br J Clin Pharmacol 1985; 20: 649–58

    Article  PubMed  CAS  Google Scholar 

  33. Dashwood M, Jacobs M. Autoradiographic study of the α2-adrenoceptors of rat aorta and rail artery. Eur J Pharmacol 1995; 115: 129

    Article  Google Scholar 

  34. Senard JM, Chamontin B, Rascol A, et al. Ambulatory blood pressure in patients with Parkinson’s disease without and with orthostatic hypotension. Clin Auton Res 1992; 2: 99–104

    Article  PubMed  CAS  Google Scholar 

  35. Nagatsu T, Wakui Y, Kato T, et al. Dopamine beta-hydroxylase activity in cerebrospinal fluid of Parkinsonian patients. Biomed Res 1982; 3: 395–8

    Google Scholar 

  36. Mann D, Yates PO. Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Develop 1983; 21: 193–203

    Article  CAS  Google Scholar 

  37. Cash R, Dennis T, L’Hereux R, et al. Parkinson’s disease and dementia: norepinephrine and dopamine in locus coeruleus. Neurology 1987; 37: 42–6

    Article  PubMed  CAS  Google Scholar 

  38. Cash R, Raisman R, Lanfumay L, et al. Cellular localization of adrenergic receptors in rat and human brain. Brain Res 1986; 370: 127–35

    Article  PubMed  CAS  Google Scholar 

  39. Gaspar P, Duyckaerts C, Alvarez C, et al. Alterations of dopa-minergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol 1991; 30: 365–74

    Article  PubMed  CAS  Google Scholar 

  40. Scatton B, Javoy-Agid F, Rouquier L, et al. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 1983; 275: 321–8

    Article  PubMed  CAS  Google Scholar 

  41. Chan-Palay V, Asan E. Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and Parkinson’s disease with and without dementia and depression. J Comp Neurol 1989; 287: 373–82

    Article  PubMed  CAS  Google Scholar 

  42. Riedere P, Birkmayer W, Seemann D, et al. Brain noradrenaline and 3-methoxy-4-hydroxyphenylglycol in Parkinson’s disease. J Neural Transm 1977; 41: 241–51

    Article  Google Scholar 

  43. Farley IJ, Hornykiewicz O. Noradrenaline in subcortical brain regions of patients with Parkinson’s disease and control subjects. In: Birkmayer W, Hornykiewicz O, editors. Advances in parkinsonism. Basel: Editions Roche, 1976; 178–85

    Google Scholar 

  44. Allen JM, Cross AJ, Crow TJ, et al. Dissociation of neuropeptide Y and somatostatin in Parkinson’s disease. Brain Res 1985; 337: 197–200

    Article  PubMed  CAS  Google Scholar 

  45. Cash R, Ruberg M, Raisman R, et al. Adrenergic receptors in Parkinson’s disease. Brain Res 1984; 322: 269–75

    Article  PubMed  CAS  Google Scholar 

  46. Villeneuve A, Berlan M, Lafontan M, et al. Platelet α2-adrenoceptors in Parkinson’s disease: decreased number in untreated patients and recovery after treatment. Eur J Clin Invest 1985; 15: 403–7

    Article  PubMed  CAS  Google Scholar 

  47. Rinne UK, Sonninen V. Brain catecholamines and their metabolites in Parkinsonian patients. Arch Neurol 1973; 28: 107–10

    Article  PubMed  CAS  Google Scholar 

  48. Reynolds GP, Boulton RM, Pearson SJ, et al. Imidazoline binding sites in Huntington’s and Parkinson’s disease putamen. Eur J Pharmacol 1996; 301: R19–21

    Article  PubMed  CAS  Google Scholar 

  49. Scatton B, Dennis T, L’Heureux R, et al. Degeneration of noradrenergic and serotonergic but not dopaminergic neurones in the lumbar spinal cord of Parkinsonian patients. Brain Res 1986; 380: 181–5

    Article  PubMed  CAS  Google Scholar 

  50. Wooten GF. Neurochemistry and neuropharmacology of Parkinson’s disease. In: Koller and Watts, editors. Movement disorders: neurologic principles and practice. New York: McGraw-Hill, 1997; 153–60

    Google Scholar 

  51. Gai WP, Geffen LB, Denoroy L, et al. Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease. Ann Neurol 1993; 33: 357–67

    Article  PubMed  CAS  Google Scholar 

  52. Carlton SM, Honda CN, Willcokson WS, et al. Descending adrenergic input to the primate spinal cord and its possible role in modulation of spinothalamic cells. Brain Res 1991; 543: 77–90

    Article  PubMed  CAS  Google Scholar 

  53. Agid Y, Javoy-Agid F, Ruberg M. Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CD, Fahn S, editors. Movement disorders. Vol 2. New York: Raven Press, 1987; 166–230

    Google Scholar 

  54. Britton DR, Ksir C, Thatcher-Britton K, et al. Brain norepinephrine depleting lesions selectively enhance behavioral responsiveness to novelty. Physiol Behav 1984; 33: 473–8

    Article  PubMed  CAS  Google Scholar 

  55. Lategan AJ, Mavridis M, Marien M, et al. The effects of locus coeruleus lesions on behaviours induced by putative D1 and D2 receptor agonists. Neurosci Res Comm 1989; 5: 63–72

    CAS  Google Scholar 

  56. Bennett MC, Kaleta-Michaels S, Arnold M, et al. Impairment of active avoidance by the noradrenergic neurotoxin, DSP-4: attenuation by post-training epinephrine. Psychopharmacology 1990; 101: 505–10

    Article  PubMed  CAS  Google Scholar 

  57. Donaldson I, Mac G, Dolphin A, et al. The roles of noradrenaline and dopamine in contraversive circling behaviour seen after unilateral electrolytic lesions of the locus coeruleus. Eur J Pharmacol 1976; 39: 179–91

    Article  PubMed  CAS  Google Scholar 

  58. Drew GM, Gower AJ, Marriot AS. α2-Adrenoceptors mediate clonidine-induced sedation in the rat. Br J Pharmacol 1979; 67: 133–41

    Article  PubMed  CAS  Google Scholar 

  59. Grenhoff J, Svensson TH. Clonidine regularizes substantia nigra dopamine cell firing. Life Sci 1988; 42: 2003–9

    Article  PubMed  CAS  Google Scholar 

  60. Grenhoff J, Svensson TH. Clonidine modulates dopamine cell firing in the rat ventral tegmental area. Eur J Pharmacol 1989; 165: 11–8

    Article  PubMed  CAS  Google Scholar 

  61. Bowes MP, Peters RH, Kernan WJ, et al. Effects of yohimbine and idazoxan on motor behaviors in male rats. Pharmacol Biochem Behav 1992; 41: 707–13

    Article  PubMed  CAS  Google Scholar 

  62. Chopin P, Pellow S, File SE. The effects of yohimbine on exploratory and locomotor behavior are attribuable to its effects at noradrenaline and not at benzodiazepine receptors. Neuropharmacology 1986; 25: 53–7

    Article  PubMed  CAS  Google Scholar 

  63. Anden NE, Pauksen K, Swensson K. Selective blockade of brain α2 autoreceptors by yohimbine: effects on motor activity and on turnover of noradrenaline and dopamine. J Neural Transm 1982; 55: 111–20

    Article  PubMed  CAS  Google Scholar 

  64. Sangvi I, Gershon S. Yohimbine: behavioral and biochemical effects in mice. Arch Int Pharmacodyn 1974; 210: 108–20

    Google Scholar 

  65. Dickinson SL, Gadie B, Tulloch IF. α1 And α2-adrenoceptor antagonists differentially influence locomotor and stereotyped behaviour induced by d-amphetamine and apomorphine in the rat. Psychopharmacology 1988; 96: 521–7

    Article  PubMed  CAS  Google Scholar 

  66. Anderson RJ. Modification of reserpine induced rigidity by dopaminergic and alpha-adrenergic drugs. Acta Neurol Scand 1985; 584-9

  67. Colpaert FC. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology 1987; 26: 1431–40

    Article  PubMed  CAS  Google Scholar 

  68. Shukla VK, Garg SK, Kulkarni SK. Yohimbine potentiates the anticataleptic action of clonidine against perphenazine-in-duced catalepsy in rats. Arch Int Pharmacodyn 1986; 282: 44–9

    PubMed  CAS  Google Scholar 

  69. Bende MM, Bapat TR, Balsara JJ, et al. Effects of yohimbine on dopamine dependent behavious in rats and mice. Indian J Pharmacol 1990; 34: 195–200

    CAS  Google Scholar 

  70. Mavridis M, Colpaert FC, Millan MJ. Differential modulation of (+)-amphetamine-induced rotation in unilateral substantia nigra—lesioned rats by α1 as to compared to α2 agonists and antagonists. Brain Res 1991; 562: 216–24

    Article  PubMed  CAS  Google Scholar 

  71. Mavridis M, Degryse AD, Lategan AJ, et al. Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 1991; 41: 507–23

    Article  PubMed  CAS  Google Scholar 

  72. Bezard E, Brefel C, Tison F, et al. Effect of an alpha-2 antagonist, idazoxan, in experimental parkinsonism: a pilot study. Mov Disord 1997; 12Suppl. 1: 427

    Google Scholar 

  73. Ghika J, Tennis M, Hoffman E, et al. Idazoxan treatment in progressive supranuclear palsy. Neurology 1991; 41: 986–91

    Article  PubMed  CAS  Google Scholar 

  74. Rascol O, Sieradzan K, Peyro Saint Paul H, et al. Efaroxan, an alpha-2 antagonist, in the treatment of progressive supra-nuclear palsy. Fourth International Congress of Movement Disorders; 1996 Jun 17–21: Vienna, 511

  75. Hill MP, Brotchie JM. α2-adrenoceptor agonists potentiate the antiparkinsonian effect of κ opioid receptor agonists. Mov Disord 1997; 12Suppl. 1: 440

    Google Scholar 

  76. Raiteri M, Bonanno G, Maura G, et al. Subclassification of release-regulating α2-autoreceptors in human brain cortex. Br J Pharmacol 1992; 107: 1146–51

    Article  PubMed  CAS  Google Scholar 

  77. L’Heureux R, Dennis T, Curet O, et al. Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting norad-renergic transmission. J Neurochem 1986; 46: 1794–801

    Article  PubMed  Google Scholar 

  78. Svensson TH, Bunney BS, Aghajanian GK. Inhibition of both noradrenergic and serotonergic neurons in brain by the α-ad-renergic agonist clonidine. Brain Res 1975; 92: 291–306

    Article  PubMed  CAS  Google Scholar 

  79. Langer SZ. 25 years since the discovery of presynaptic receptors: present knowledge and future perspectives. Trends Pharmacol Sci 1997; 18; 95–9

    Article  PubMed  CAS  Google Scholar 

  80. Geyer MA, Lee EHY. Effects of clonidine, piperoxane and locus coeruleus lesion on the serotonergic and dopaminergic systems in the raphe and caudate nucleus. Biochem Pharmacol 1984; 33: 3399–404

    Article  PubMed  CAS  Google Scholar 

  81. Collingridge GL, James TA, Macleod NK. Neurochemical and electrophysiological evidence for a projection from the locus coeruleus to the substantia nigra. J Physiol (Lond) 1979; 290: 44P

    CAS  Google Scholar 

  82. Scatton B, Dennis T, Curet O. Increase in dopamine and DOPAC levels in noradrenergic terminals after electrical stimulation of the ascending noradrenergic pathways. Brain Res 1984; 298: 193–6

    Article  PubMed  CAS  Google Scholar 

  83. Lategan AJ, Marien MR, Colpaert FC. Effects of locus coeruleus lesions on the release of endogenous dopamine in the rat nucleus accumben and caudate nucleus as determined by intracerebral microdialysis. Brain Res 1990; 523: 134–8

    Article  PubMed  CAS  Google Scholar 

  84. Nutt D, Ladies M, Hudson A. The effects of α adrenoceptor antagonists on extracellular dopamine concentrations in rat striatum. In: Briley M, Marien M, editors. Noradrenergic mechanisms in Parkinson’s disease. Boca Raton (FL): CRC Press, 1994; 159–72

    Google Scholar 

  85. Taghzouti K, Simon H, Hervé D, et al. Behavioural deficits induced by an electrolytic lesion of the rat ventral mesencephalic tegmentum are corrected by a surimposed lesion of the dorsal noradrenergic system. Brain Res 1988; 440: 172–6

    Article  PubMed  CAS  Google Scholar 

  86. Tassin JP, Studier JM, Hervé D, et al. Contribution of noradrenergic neurons to the regulation of dopaminergic (D1) receptor denervation supersensitivity in rat prefrontal cortex. J Neurochem 1986; 46: 243–8

    Article  PubMed  CAS  Google Scholar 

  87. Mavridis M, Millan MJ, Colpaert FC. al and α2 antagonists differentially modulate d-amphetamine and apomorphine-induced rotation in substancia nigra lesioned rats. Eur J Pharmacol 1990; 183: 448

    Article  Google Scholar 

  88. Göthert M, Schlicker E. Regulation of serotonin release in the central nervous system by presynaptic heteroreceptors. In: Feigenbaum J, Hanani M, editors. Presynaptic regulation of neurotransmitter release: a handbook. Tel Aviv: Freund, 1991: 845–76

    Google Scholar 

  89. Beani L, Bianchi C. Noradrenergic regulation of acetylcholine release in the central nervous system. In Feigenbaum J, Hanani M, editors. Presynaptic regulation of neurotransmitter release: a handbook. Tel Aviv: Freund, 1991: 821–43

    Google Scholar 

  90. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12: 366–75

    Article  PubMed  CAS  Google Scholar 

  91. Hill MP, Brotchie JM. Modulation of glutamate release by a κ opioid receptor agonist in rodent and primate striatum. Eur J Pharmacol 1995; 281: R1–2

    Article  PubMed  CAS  Google Scholar 

  92. Gomez-Mancilla B, Bedart PJ. Effect of nondopaminergic drugs on L-Dopa-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 1993; 16: 418–27

    Article  PubMed  CAS  Google Scholar 

  93. Rascol O, Arnulf I, Brefel C, et al. L-DOPA—induced dyskinesias improvement by an alpha-2 antagonist, idazoxan, in patients with Parkinson’s disease. Mov Disord 1997; 12Suppl. 1: 418

    Google Scholar 

  94. Henry B, Brotchie JM. Potential of opioid antagonists in the treatment of levodopa-induced dyskinesias in Parkinson’s disease. Drugs Aging 1996; 9: 149–58

    Article  PubMed  CAS  Google Scholar 

  95. Papa SM, Chase TN. Levodopa-induced dyskinesias improved by glutamate antagonist in parkinsonian monkeys. Ann Neurol 1996; 39: 574–8

    Article  PubMed  CAS  Google Scholar 

  96. Marsden CD, Duvoisin RC, Jenner P, et al. Relationship between animal models and clinical Parkinsonism. Adv Neurol 1975; 9: 165–75

    PubMed  CAS  Google Scholar 

  97. Tohgi H, Abe T, Takahashi S. The significance of norepinephrine deficiency in the pathogenesis of freezing phenomena and the effects of L-threo-Dopa. In: Narabayashi H, Mizuno Y, editors. Norepinephrine deficiency. New York: Parthenon, 1991: 77–86

    Google Scholar 

  98. Lakke JPWS. Axial apraxia in Parkinson’s disease. J Neurol Sci 1985; 69: 37–46

    Article  PubMed  CAS  Google Scholar 

  99. Narabayashi h, Kondo T, Nagatsu T, et al. DL-threo-3,4-dihydroxyphenylserine treatment for freezing symptoms in Parkinsonism. Adv Neurol 1984; 40: 497–502

    PubMed  CAS  Google Scholar 

  100. Narabayashi h, Kondo T, Yokochi F, et al. Clinical effect of L-threo-3,4-dihydroxyphenylserine in cases of Parkinsonism and pure akinesia. Adv Neurol 1986; 45: 593–602

    Google Scholar 

  101. Quinn NP, Perlmutter JS, Marsden CD. Acute administration of DL-threo-DOPS does not affect the freezing phenomena in Parkinsonian patients. Neurology 1984; 34Suppl. 1: 149

    Google Scholar 

  102. Maertens De Noordhout A, Pepin JL, Delwaide PJ. Open study of tinazidine in the treatment of freezing gait. 11th International Symposium on Parkinson’s Disease; 1994 Mar 26–30: Rome

  103. Amsten AFT, Goldamn-Rakic PS. Alpha-2 adrenergic mech-anims in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 1985; 230: 1273–6

    Article  Google Scholar 

  104. Cia JS, Ma Y, Xu L, et al. Reserpine impairs spacial working memory performance in monkeys: reversal by the α2-adrenergic agonist clonidine. Brain Res 1993; 614: 191–6

    Article  Google Scholar 

  105. Sara SJ. The locus coeruleus and cognitive function: attemps to relate noradrenergic enhancement of signal/noise in the brain. Physiol Psychol 1985; 13: 151–62

    Google Scholar 

  106. Sara SJ, Devauges V. Idazoxan, an α2 antagonist, facilitates memory retrieval in the rat. Behav Neural Biol 1989; 51: 401–11

    Article  PubMed  CAS  Google Scholar 

  107. Zornetzer SF. Catecholamine system involvement in age-related memory dysfunction. Ann NY Acad Sci 1985; 444: 242–54

    Article  PubMed  CAS  Google Scholar 

  108. Arnsten AFT, Cai JX. Postsynaptic aplha-2 receptor stimulation improves memory in aged monkeys: indirect effects of yohimbine versus direct effects of clonidine. Neurobiol Aging 1993; 14: 597–603

    Article  PubMed  CAS  Google Scholar 

  109. Smith AP, Wilson SJ, Glue P, et al. The effects and after effects of the α2-adrenoceptor antagonist idazoxan on mood, memory and attention in normal volonteers. J Psychopharmacol 1992; 6: 376–81

    Article  PubMed  CAS  Google Scholar 

  110. Coull JT, Sahakian BJ, Hodges JR. The α2 antagonist idazoxan remediates certain attentional and executive dysfunction in patients with dementia of frontal type. Psychopharmacol 1996; 123: 239–49

    Article  CAS  Google Scholar 

  111. German DC, Manaye KF, White CL, et al. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 1992; 32: 667–76

    Article  PubMed  CAS  Google Scholar 

  112. Mayeux R, Williams JBW, Stern Y, et al. Depression and Parkinson’s disease. Adv Neurology 1984; 40: 241–50

    CAS  Google Scholar 

  113. Huber SJ, Paulson GW, Shuttleworth E. Relationship of motor symptoms, intellectual impairment, and depression in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988; 51: 855–8

    Article  PubMed  CAS  Google Scholar 

  114. Heninger GR, Charney DS. Mechanism of action of antidepressant treatments: implications for the etiology and treatment of depressive disorders. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987: 535–45

    Google Scholar 

  115. Lecrubier Y, Puech AJ, Jouvent R, et al. A beta-adrenergic stimulant salbutamol vs clomipramine in depression: a controlled study. Br J Psychiatry 1980; 136; 354–8

    Article  PubMed  CAS  Google Scholar 

  116. Crews FT, Paul SM, Goodwin FK. Acceleration of β-receptor desensitization in combined administration of antidepressants and phenoxybenzamide. Nature 1981; 290: 787–9

    Article  PubMed  CAS  Google Scholar 

  117. Campbell IC, McKernan RM, Smokcum RWJ, et al. Effect of desipramine, phenoxybenzamine and yohimbine on β- adrenoceptors and cyclic AMP production in the rat brain. Neuropharmacology 1984; 23: 1385–8

    Article  PubMed  CAS  Google Scholar 

  118. Lipinski JF, Cohen DJ, Zubenko GS, et al. Adrenoreceptors and the pharmacology of affective disorders: a unifying theory. Life Sci 1987; 40: 1947–63

    Article  PubMed  CAS  Google Scholar 

  119. Charney DS, Price LH, Heninger GR. Despiramine-yohimbine combination treatment of refractory depression. Arch Gen Psychiatry 1986; 43: 1155–61

    Article  PubMed  CAS  Google Scholar 

  120. Schmauss M, Laakmann G, Dieterle D. Effects of α2 receptor blockade in addition to tricyclic antidepressants in therapy-resistant depression. J Clin Psychopharmacol 1988; 8: 108–11

    Article  PubMed  CAS  Google Scholar 

  121. Crossley DI. The effects of idazoxan, an α2-adrenoceptor antagonist, in depression — a preliminary investigation [abstract no. 1724P]. Proceedings of the 9th IUPHAR Congress; 1984. London: Macmillan

    Google Scholar 

  122. Osmon OT, Rudorfer MV, Potter WZ. Idazoxan: a selective α2 antagonist and effective antidepressant in two bipolar depressed patients. Arch Gen Pharmacol 1989; 46: 958–9

    Article  Google Scholar 

  123. De Boer T, Ruigt GSR. The selective α2-adrenoceptor antagonist mirtazepine (Org 3770) enhances noradrenergic and 5-HT1 A—mediated serotonergic neurotransmission. CNS Drugs 1995; 4Suppl. 1: 29–38

    Article  Google Scholar 

  124. Montastruc JL, Senard JM, Rascol O, et al. Autonomie nervous system dysfunction and adrenoceptor regulation in Parkinson’s disease. Adv Neurol 1996; 69: 377–81

    PubMed  CAS  Google Scholar 

  125. Durrieu G, Senard JM, Tran MA, et al. Effects of levodopa and bromocriptine on blood pressure and plasma catecholamines in Parkinsonians. Clin Neuropharmacol 1991; 14: 84–90

    Article  PubMed  CAS  Google Scholar 

  126. Berlan M, Rascol O, Belin J, et al. α2-Adrenergic sensitivity in Parkinson’s disease. Clin Neuropharmacol 1989; 12: 138–44

    Article  PubMed  CAS  Google Scholar 

  127. Senard JM, Valet P, Durrieu G, et al. Adrenergic supersensitivity in Parkinsonians with orthostatic hypotension. Eur J Clin Invest 1990; 20: 613–9

    Article  PubMed  CAS  Google Scholar 

  128. Senard JM, Rascol O, Durrieu G, et al. Effects of yohimbine on plasma catecholamine levels in orthostatic hypotension related to Parkinson disease or multiple system atrophy. Clin Neuropharmacol 1993; 16: 70–6

    Article  PubMed  CAS  Google Scholar 

  129. Timmermans P, Van Zwieten PA. α2-adrenoceptors: classification, localization, mechanism and targets for drugs. J Med Chem 1982; 25: 1389–401

    Article  PubMed  CAS  Google Scholar 

  130. Taouis M, Berlan M, Montastruc P, et al. Mechanism of the lipid mobilizing effect of α2-adrenergic antagonists in the dog. J Pharmacol Exp Ther 1988; 247: 1172–80

    PubMed  CAS  Google Scholar 

  131. Goldberg MR, Hollister AS, Robertson D. Influence of yohimbine on blood pressure, autonomie reflexes and plasma catecholamines in humans. Hypertension 1983; 5: 772–8

    Article  PubMed  CAS  Google Scholar 

  132. Charney DS, Heninger GR, Sternberg DE. Assessment of α2-adrenergic autoreceptor function in humans: effects of oral yohimbine. Life Sci 1982; 30: 2033–41

    Article  PubMed  CAS  Google Scholar 

  133. Krystal JH, McDougle CJ, Woods SW, et al. Dose-response relationship for oral idazoxan effects in healthy human subjects: comparison with oral yohimbine. Psychopharmacology 1992; 108: 313–9

    Article  PubMed  CAS  Google Scholar 

  134. Onrot J, Golderg MR, Biaggioni I, et al. Oral yohimbine in human autonomie failure. Neurology 1987; 37: 215–20

    Article  PubMed  CAS  Google Scholar 

  135. Lecrubier Y, Puech AJ, Des Lauriers A. Favourable effects of yohimbine on clomipramine-induced orthostatic hypotension: a double-blind study. Br J Clin Pharmacol 1981; 12: 90–4

    Article  PubMed  CAS  Google Scholar 

  136. Lacomblez L, Bensimon G, Isnard F, et al. Effects of yohimbine on blood pressure in patients with depression and orthostatic hypotension induced by clomipramine. Clin Pharmacol Ther 1989; 45: 241–51

    Article  PubMed  CAS  Google Scholar 

  137. Senard JM, Rascol O, Rascol A, et al. Lack of yohimbine effect on ambulatory blood pressure recording: a double-blind cross-over trial in Parkinsonians with orthostatic hypotension. Fundam Clin Pharmacol 1993; 7: 465–70

    PubMed  CAS  Google Scholar 

  138. Morales A, Condra M, Owen JA, et al. Is yohimbine effective in the treatment of organic impotence? Results of a controlled trial. J Urol 1987; 137: 1168–72

    PubMed  CAS  Google Scholar 

  139. Sonda LP, Mazo R, Chancellor MB. The role of yohimbine for the treatment of erectile impotence. J Sex Marital Ther 1990; 16: 15–21

    Article  PubMed  CAS  Google Scholar 

  140. Shatz CJ. Impulse activity and the patterning of connections during CNS development. Neuron 1990; 10: 1083–103

    Google Scholar 

  141. Stone EA, Adriano MA. Are glial cells targets of the central noradrenergic system? A review of the evidence. Brain Res Rev 1989; 14: 297–309

    Article  PubMed  CAS  Google Scholar 

  142. Jenner P, Olanow W. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996; 47Suppl. 3: S161–70

    Article  PubMed  CAS  Google Scholar 

  143. Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328: 176–83

    Article  Google Scholar 

  144. Carpene C, Collon P, Remaury A, et al. Inhibition of amine oxydase activity by derivatives that recognize imidazoline I2 sites. J Pharmacol Exp Ther 1995; 272: 681–8

    PubMed  CAS  Google Scholar 

  145. Tesson F, Limon-Boulez I, Urban P, et al. Localization of I2-imidazoline binding sites on monoamine oxidases. J Biol Chem 1995; 270: 9856–61

    Article  PubMed  CAS  Google Scholar 

  146. Raddatz R, Parini A, Lanier SM. Imidazoline/guanidinium binding domains on monoamine oxidases: relationship to subtypes of imidazoline binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. J Biol Chem 1995; 270: 27961–8

    Article  PubMed  CAS  Google Scholar 

  147. Gargalidis-Moudanos C, Pizzinat N, Javoy-Agid F, et al. I2-imidazoline binding sites and monoamine oxidase activity in human postmortem brain from patients with parkinson’s disease. Neurochem Int 1997; 30: 31–6

    Article  PubMed  CAS  Google Scholar 

  148. Bagheri H, Schmitt L, Berlan M, et al. Effect of 3 weeks treatment with yohimbine on salivary secretion in healthy volunters and in depressed patients treated with tricyclic anti-drepressants. Br J Clin Pharmacol 1992; 34: 555–8

    Article  PubMed  CAS  Google Scholar 

  149. Berlan M, Montastruc JL, Lafontan M. Pharmacological prospects for α2-adrenoceptor antagonist therapy. Trends Pharmacol Sci 1992; 13: 277–82

    Article  PubMed  CAS  Google Scholar 

  150. Zacchariah PK, Sheps SG, Ifstrup DM, et al. Blood pressure load — a better determinant of hypertension. Mayo Clin Proc 1988; 63: 1085–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Rascol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brefel-Courbon, C., Thalamas, C., Peyro Saint Paul, H. et al. α2-Adrenoceptor Antagonists. Mol Diag Ther 10, 189–207 (1998). https://doi.org/10.2165/00023210-199810030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199810030-00004

Keywords

Navigation