Skip to main content
Log in

Rosiglitazone

A Review of its Use in Type 2 Diabetes Mellitus

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Abstract

Rosiglitazone (Avandia®) is an antihyperglycaemic agent of the thiazolidinedione class that improves glycaemic control (as indicated by glycosylated haemoglobin [HbA1c] and fasting plasma glucose [FPG] levels) primarily by increasing hepatic and peripheral insulin sensitivity, and in addition may help to preserve pancreatic β-cell function.

In general, rosiglitazone as monotherapy or in combination with other antihyperglycaemic agents, including metformin or sulfonylureas, improves glycaemic control in adults with type 2 diabetes mellitus and may slow disease progression associated with pancreatic β-cell function decline. Rosiglitazone is generally well tolerated; however, additional long-term and comparative studies are required to further evaluate the effects of rosiglitazone on bone and the potential cardiovascular risk of the drug, including the risk relative to pioglitazone. Thus, in light of recent cardiovascular safety concerns and the need for further long-term data to clarify the potential risk of rosiglitazone in this regard, it would be prudent to use rosiglitazone in the treatment of type 2 diabetes on a case-by-case basis, taking into account individual patient cardiovascular risk factors.

Pharmacological Properties

Rosiglitazone, a member of the thiazolidinedione class of antihyperglycaemic agents, is a potent agonist of the peroxisome proliferator-activated receptor-γ through which many of its effects are mediated. The drug reduces hyperglycaemia primarily by improving the insulin sensitivity of the liver and peripheral tissues, and also appears to attenuate the decline in function of pancreatic β-cells. Rosiglitazone increases subcutaneous fat levels and is generally associated with bodyweight gain, although visceral and intra-hepatic fat is reduced. Rosiglitazone may have detrimental effects on bone.

Plasma concentrations of rosiglitazone increase proportionally with dose over the therapeutic range and the absolute bioavailability of the drug is ≈99% following an oral dose. Rosiglitazone is extensively metabolised via N-demethylation and hydroxylation predominantly via the cytochrome P450 (CYP) enzyme CYP2C8. The drug is excreted mainly via the urine and faeces, has a terminal elimination half-life of ≈3–4 hours and a total plasma clearance of ≈3 L/h. In the EU, caution is advised in patients with severe renal impairment receiving rosiglitazone.

Therapeutic Efficacy

In well designed monotherapy trials of 24 weeks’ to a median of 4 years’ duration, rosiglitazone was as effective as pioglitazone, superior to metformin and noninferior or superior to both the sulfonylurea glibenclamide (glyburide) and the dipeptidyl peptidase IV inhibitor vildagliptin in improving glycaemic control in patients with type 2 diabetes. Long term, rosiglitazone was also associated with a significantly lower incidence of treatment failure than metformin or glibenclamide in patients with type 2 diabetes previously untreated with pharmacotherapy.

Rosiglitazone used in combination with metformin provided better glycaemic control than metformin alone in short-term trials in patients with type 2 diabetes inadequately controlled with metformin alone or in combination with an oral insulin secretagogue or acarbose. In addition, long term, rosiglitazone plus metformin was noninferior to or as effective as metformin plus a sulfonylurea in improving glycaemic control in patients with type 2 diabetes inadequately controlled with metformin monotherapy.

In additional short-term studies, rosiglitazone in combination with a sulfonylurea was superior to sulfonylurea monotherapy and noninferior to or at least as effective as metformin plus sulfonylurea with regard to improving glycaemic control in patients with type 2 diabetes inadequately controlled with a sulfonylurea alone. Furthermore, in a 1.5-year interim analysis of a large, randomised, multicentre study, rosiglitazone plus sulfonylurea was shown to be noninferior to metformin plus sulfonylurea in terms of improving HbA1c levels, with both combination therapies demonstrating similar efficacy in improving levels of FPG.

In triple-therapy trials in patients with type 2 diabetes inadequately controlled with metformin plus a sulfonylurea, the addition of rosiglitazone significantly improved glycaemic control compared with metformin plus sulfonylurea combination therapy alone and produced similar improvements in glycaemic control to the addition of insulin glargine in terms of HbA1c.

Patients with type 2 diabetes receiving rosiglitazone in combination with metformin or a sulfonylurea were more satisfied with treatment than patients receiving uptitrated metformin or sulfonylurea, in studies of 24 weeks’ and 2 years’ duration. Data from a short-term study suggest that adding rosiglitazone to metformin plus a sulfonylurea in patients with inadequate glycaemic control with this dual therapy is generally significantly less effective at improving health-related quality of life than the addition of insulin glargine.

Fully published pharmacoeconomic model analyses from a healthcare system or health insurance perspective have indicated that rosiglitazone combination therapies are generally cost-effective options compared with conventional therapies for the treatment of type 2 diabetes, although in combination with metformin, rosiglitazone appears to be less cost effective than pioglitazone in patients with inadequate glycaemic control with metformin monotherapy, according to one pharmacoeconomic model.

Tolerability

Rosiglitazone was generally well tolerated as monotherapy and in combination with other antidiabetic agents in adult patients with type 2 diabetes in clinical trials of up to a median of 4 years’ duration. In general, rosiglitazone therapy was associated with oedema and congestive heart failure, although the drug did not differ from pioglitazone with regard to these adverse events in a 24-week study. Rosiglitazone alone or in combination with other antidiabetic agents was associated with changes from baseline in bodyweight of +0.2 to +4.3kg in trials of 8 weeks’ to a median of 4 years’ duration. The drug was also associated with an increased incidence of bone fractures compared with metformin or glibenclamide in female patients with type 2 diabetes in one long-term study. Limited data from long-term clinical trials have not confirmed the findings of meta-analyses suggesting an increased risk of myocardial infarction with rosiglitazone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Fig. 1
Table VI
Table VII
Table VIII
Table IX
Table X
Fig. 2

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. World Health Organization. Diabetes [online]. Available from URL: http://www.who.int/mediacentre/factsheets/fs312/en/print/html [Accessed 2007 May 11]

  2. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004 May; 27(5): 1047–53

    Article  PubMed  Google Scholar 

  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2005 Jan; 28 Suppl. 1: S37–42

    Article  Google Scholar 

  4. International Diabetes Federation. Diabetes e-atlas [online]. Available from URL: http://www.eatlas.idf.org [Accessed 2007 Jul 25]

  5. Wagstaff AJ, Goa KL. Rosiglitazone: a review of its use in the management of type 2 diabetes mellitus [published erratum appears in Drugs 2003; 63(11): 1163]. Drugs 2002; 62(12): 1805–37

    Article  PubMed  CAS  Google Scholar 

  6. Bhatt DL, Chew DP, Grines C, et al. Peroxisome proliferator-activated receptor y agonists for the prevention of adverse events following percutaneous coronary revascularization: results of the PPAR study [published erratum appears in Am Heart J 2007; 154(2): 402]. Am Heart J 2007 Jul; 154(1): 137–43

    Article  PubMed  CAS  Google Scholar 

  7. Rosenstock J, Baron MA, Dejager S, et al. Comparison of vildagliptin and rosiglitazone monotherapy in patients with type 2 diabetes: a 24-week, double-blind, randomized trial. Diabetes Care 2007 Feb; 30(2): 217–23

    Article  PubMed  CAS  Google Scholar 

  8. Yki-Järvinen H. Thiazolidinediones. N Eng J Med 2004 Sep 9; 351(11): 1106–18

    Article  Google Scholar 

  9. Armoni M, Kritz N, Harel C, et al. Peroxisome proliferator-activated receptor-y represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem 2003 Aug 15; 278(33): 30614–23

    Article  PubMed  CAS  Google Scholar 

  10. Hernandez R, Teruel T, Lorenzo M. Rosiglitazone produces insulin sensitisation by increasing expression of the insulin receptor and its tyrosine kinase activity in brown adipocytes. Diabetologia 2003 Dec; 46(12): 1618–28

    Article  PubMed  CAS  Google Scholar 

  11. Sun X, Han R, Wang Z, et al. Regulation of adiponectin receptors in hepatocytes by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. Diabetologia 2006 Jun; 49(6): 1303–10

    Article  PubMed  CAS  Google Scholar 

  12. Tan GD, Debard C, Funahashi T, et al. Changes in adiponectin receptor expression in muscle and adipose tissue of type 2 diabetic patients during rosiglitazone therapy. Diabetologia 2005 Aug; 48(8): 1585–9

    Article  PubMed  CAS  Google Scholar 

  13. Leiter LA. Can thiazolidinediones delay disease progression in type 2 diabetes? Curr Med Res Opin 2006 Jun; 22(6): 1193–201

    Article  PubMed  CAS  Google Scholar 

  14. Hanefeld M, Patwardhan R, Jones NP. A one-year study comparing the efficacy and safety of rosiglitazone and glibenclamide in the treatment of type 2 diabetes. Nutr Metab Cardiovasc Dis 2007 Jan; 17(1): 13–23

    Article  PubMed  CAS  Google Scholar 

  15. Gastaldelli A, Ferrannini E, Miyazaki Y, et al. Thiazolidinediones improve beta-cell function in type 2 diabetic patients. Am J Physiol Endocrinol Metab 2007 Mar; 292(3): E871–83

    Article  PubMed  CAS  Google Scholar 

  16. Lebovitz HE, Dole JF, Patwardhan R, et al. Rosiglitazone monotherapy is effective in patients with type 2 diabetes [published erratum appears in J Clin Endocrinol Metab 2001; 86: 1659]. J Clin Endocrinol Metab 2001; 86(1): 280–8

    Article  PubMed  CAS  Google Scholar 

  17. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy [published erratum appears in N Engl J Med 2007; 356(13): 1387–8]. N Engl J Med 2006 Dec 7; 355(23): 2427–43

    Article  PubMed  CAS  Google Scholar 

  18. Smith SA, Porter LE, Biswas N, et al. Rosiglitazone, but not glyburide, reduces circulating proinsulin and the proinsulin:insulin ratio in type 2 diabetes. J Clin Endocrinol Metab 2004 Dec; 89(12): 6048–53

    Article  PubMed  CAS  Google Scholar 

  19. Rosenstock J, Goldstein BJ, Vinik AI, et al. Effect of early addition of rosiglitazone to sulphonylurea therapy in older type 2 diabetes patients (>60 years): the Rosiglitazone Early vs. SULphonylurea Titration (RESULT) study. Diabetes Obes Metab 2006 Jan; 8(1): 49–57

    Article  PubMed  CAS  Google Scholar 

  20. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 2004 Jun; 27(6): 1496–504

    Article  PubMed  CAS  Google Scholar 

  21. Phillips LS, Grunberger G, Miller E, et al. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes [published erratum appears in Diabetes Care 2001; 24(5): 973]. Diabetes Care 2001; 24(2): 308–15

    Article  PubMed  CAS  Google Scholar 

  22. Nolan JJ, Jones NP, Patwardhan R, et al. Rosiglitazone taken once daily provides effective glycaemic control in patients with type 2 diabetes mellitus. Diabet Med 2000; 17(4): 287–94

    Article  PubMed  CAS  Google Scholar 

  23. Raskin P, Rappaport EB, Cole ST, et al. Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type II diabetes. Diabetologia 2000; 43(3): 278–84

    Article  PubMed  CAS  Google Scholar 

  24. Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials. Diabetes Care 2002 May; 25(5): 815–21

    Article  PubMed  CAS  Google Scholar 

  25. Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005 Jul; 28(7): 1547–54

    Article  PubMed  CAS  Google Scholar 

  26. Bailey CJ, Bagdonas A, Rubes J, et al. Rosiglitazone/metformin fixed-dose combination compared with uptitrated metformin alone in type 2 diabetes mellitus: a 24-week, multicenter, randomized, double-blind, parallel-group study. Clin Ther 2005; 27(10): 1548–61

    Article  PubMed  CAS  Google Scholar 

  27. Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283: 1695–702

    Article  PubMed  CAS  Google Scholar 

  28. Home PD, Jones NP, Pocock SJ, et al. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med 2007 Jun; 24(6): 626–34

    Article  PubMed  CAS  Google Scholar 

  29. Kerenyi Z, Samer H, James R, et al. Combination therapy with rosiglitazone and glibenclamide compared with upward titration of glibenclamide alone in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2004 Mar; 63(3): 213–23

    Article  PubMed  CAS  Google Scholar 

  30. Rosenstock J, Sugimoto D, Strange P, et al. Triple therapy in type 2 diabetes: insulin glargine or rosiglitazone added to combination therapy of sulfonylurea plus metformin in insulin-naive patients. Diabetes Care 2006 Mar; 29(3): 554–9

    Article  PubMed  CAS  Google Scholar 

  31. Baksi A, James RE, Zhou B, et al. Comparison of uptitration of gliclazide with the addition of rosiglitazone to gliclazide in patients with type 2 diabetes inadequately controlled on half-maximal doses of a sulphonylurea. Acta Diabetol 2004 Jun; 41(2): 63–9

    Article  PubMed  CAS  Google Scholar 

  32. Yang J, Di F, He R, et al. Effect of addition of low-dose rosiglitazone to sulphonylurea therapy on glycemic control in type 2 diabetic patients. Chin Med J (Engl) 2003 May; 116(5): 785–7

    CAS  Google Scholar 

  33. Deeg MA, Buse JB, Goldberg RB, et al. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2007 Oct; 30(10): 2458–64

    Article  PubMed  CAS  Google Scholar 

  34. Freed MI, Ratner R, Marcovina SM, et al. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol 2002 Nov 1; 90(9): 947–52

    Article  PubMed  CAS  Google Scholar 

  35. Chu CS, Lee KT, Lee MY, et al. Effects of rosiglitazone alone and in combination with atorvastatin on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Am J Cardiol 2006 Mar 1; 97(5): 646–50

    Article  PubMed  CAS  Google Scholar 

  36. Yue T-L, Chen J, Bao W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. Circulation 2001; 104: 2588–94

    Article  CAS  Google Scholar 

  37. Sidell RJ, Cole MA, Draper NJ, et al. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the Zucker fatty rat heart. Diabetes 2002 Apr; 51: 1110–7

    Article  PubMed  CAS  Google Scholar 

  38. Khandoudi N, Delerive P, Berrebi-Bertrand I, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-γ, inhibits the Jun NH2-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes 2002 May; 51(5): 1507–14

    Article  PubMed  CAS  Google Scholar 

  39. St John Sutton M, Rendell M, Dandona P, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycémie control in patients with type 2 diabetes. Diabetes Care 2002 Nov; 25(11): 2058–64

    Article  Google Scholar 

  40. Patel J, Anderson RJ, Rappaport EB. Rosiglitazone monotherapy improves glycémie control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab 1999; 1: 165–72

    Article  PubMed  CAS  Google Scholar 

  41. Hallsten K, Virtanen KA, Lonnqvist F, et al. Enhancement of insulin-stimulated myocardial glucose uptake in patients with type 2 diabetes treated with rosiglitazone. Diabet Med 2004 Dec; 21(12): 1280–7

    Article  PubMed  CAS  Google Scholar 

  42. Gao DF, Niu XL, Hao GH, et al. Rosiglitazone inhibits angiotensin II-induced CTGF expression in vascular smooth muscle cells: role of PPAR-gamma in vascular fibrosis. Biochem Pharmacol 2007 Jan 15; 73(2): 185–97

    Article  PubMed  CAS  Google Scholar 

  43. Law RE, Goetze S, Xi X-P, et al. Expression and function of PPARγ in rat and human vascular smooth muscle cells. Circulation 2000 Mar 21; 101(11): 1311–8

    Article  PubMed  CAS  Google Scholar 

  44. Rahman S, Ismail AA, Ismail SB, et al. Effect of rosiglitazone/ ramipril on preclinical vasculopathy in newly diagnosed, untreated diabetes and IGT patients: 1-year randomised, double-blind, placebo-controlled study. Eur J Clin Pharmacol 2007 Aug; 63(8): 733–41

    Article  PubMed  CAS  Google Scholar 

  45. Walker AB, Chattington PD, Buckingham RE, et al. The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999; 48: 1448–53

    Article  PubMed  CAS  Google Scholar 

  46. Buckingham RE, Al-Barazanji KA, Toseland CDN, et al. Peroxisome proliferator-activated receptor-y agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes 1998; 47: 1326–34

    Article  PubMed  CAS  Google Scholar 

  47. Natali A, Baldeweg S, Toschi E, et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care 2004 Jun; 27(6): 1349–57

    Article  PubMed  CAS  Google Scholar 

  48. Nilsson PM, Hedblad B, Donaldson J, et al. Rosiglitazone reduces office and diastolic ambulatory blood pressure following 1-year treatment in non-diabetic subjects with insulin resistance. Blood Press 2007; 16(2): 95–100

    Article  PubMed  CAS  Google Scholar 

  49. Stühlinger MC, Abbasi F, Chu JW, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 2002 Mar 20; 287(11): 1420–6

    Article  PubMed  Google Scholar 

  50. Osei K, Gaillard T, Kaplow J, et al. Effects of rosiglitazone on plasma adiponectin, insulin sensitivity, and insulin secretion in high-risk African Americans with impaired glucose tolerance test and type 2 diabetes. Metabolism 2004 Dec; 53(12): 1552–7

    Article  PubMed  CAS  Google Scholar 

  51. van Doom M, Kemme M, Ouwens M, et al. Evaluation of proinflammatory cytokines and inflammation markers as biomarkers for the action of thiazolidinediones in type 2 diabetes mellitus patients and healthy volunteers. Br J Clin Pharmacol 2006 Oct; 62(4): 391–402

    Article  CAS  Google Scholar 

  52. Albertini JP, McMorn SO, Chen H, et al. Effect of rosiglitazone on factors related to endothelial dysfunction in patients with type 2 diabetes mellitus. Atherosclerosis 2007 Nov; 195(1): e159–66

    Article  PubMed  CAS  Google Scholar 

  53. Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002 Aug 6; 106(6): 679–84

    Article  PubMed  CAS  Google Scholar 

  54. Maeda N, Takahashi M, Funahashi T, et al. PPAR-γ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001 Sep; 50: 2094–9

    Article  PubMed  CAS  Google Scholar 

  55. Pistrosch F, Herbrig K, Oelschlaegel U, et al. PPARγ-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis 2005; 183(1): 163–7

    Article  PubMed  CAS  Google Scholar 

  56. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-γ, reduces acute inflammation. Eur J Pharmacol 2004 Jan 1; 483(1): 79–93

    Article  PubMed  CAS  Google Scholar 

  57. Kolak M, Yki-Jarvinen H, Kannisto K, et al. Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab 2007 Feb; 92(2): 720–4

    Article  PubMed  CAS  Google Scholar 

  58. Bakris G, Viberti G, Weston WM, et al. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J Hum Hypertens 2003 Jan; 17(1): 7–12

    Article  PubMed  CAS  Google Scholar 

  59. Pistrosch F, Passauer J, Fischer S, et al. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care 2004 Feb; 27(2): 484–90

    Article  PubMed  CAS  Google Scholar 

  60. Tan GD, Fielding BA, Currie JM, et al. The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes. Diabetologia 2005 Jan; 48(1): 83–95

    Article  PubMed  CAS  Google Scholar 

  61. Petrofsky J, Lee S, Bweir S, et al. Improvement in dermal neural vascular function with rosiglitazone in individuals with type II diabetes. J Applied Res 2004; 4(3): 499–507

    CAS  Google Scholar 

  62. Sotiropoulos KB, Clermont A, Yasuda Y, et al. Adipose-specific effect of rosiglitazone on vascular permeability and protein kinase C activation: novel mechanism for PPARγ agonist’s effects on edema and weight gain. FASEB J 2006 Jun; 20(8): 1203–5

    Article  PubMed  CAS  Google Scholar 

  63. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 2004 Jan; 27(1): 256–63

    Article  PubMed  CAS  Google Scholar 

  64. Soroceanu MA, Miao D, Bai XY, et al. Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 2004 Oct; 183(1): 203–16

    Article  PubMed  CAS  Google Scholar 

  65. European Medicines Agency. Avandia: summary of product characteristics [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/Avandia/H-268-PI-en.pdf [Accessed 2007 Oct 1]

  66. Nilsson P, Hedblad B, Zambanini A, et al. Rosiglitazone reduces carotid intima-media thickness progression over 1 year in patients with type 2 diabetes but not in non-diabetic people who have insulin resistance alone [abstract no. A40]. Diabet Med 2006 Mar; 23 Suppl. 2: 11

    Google Scholar 

  67. Tostes GCU, Silva MER, Fukui RT, et al. Efficacy of nateglinide or rosiglitazone therapy on glycemic control and serum inflammatory markers in type 2 diabetes patients [abstract no. Pl-620]. 88th Annual Meeting of the Endocrine Society; 2006 Jun 24–27; Boston (MA), 319

  68. Miyazaki Y, Cersosimo E, DeFronzo RA. Rosiglitazone decreases urinary albumin excretion in association with alteration of circulating adipocytokine levels in type 2 diabetes patients [abstract no. 455-P]. Diabetes 2005 Jun; 54 Suppl. 1: 112

    Google Scholar 

  69. Vrablik M, Dobiasova M, Stulc T, et al. Rosiglitazone improves quality of lipoproteins in patients with type 2 diabetes [abstract no. We-P11:117]. Atherosclerosis 2006 Jun 1; 7 Suppl. 3: 371

    Google Scholar 

  70. Lautamaki R, Ronnemaa T, Airaksinen KEJ, et al. Rosiglitazone increases the concentration of large, buoyant but not small dense LDL in patients with type 2 diabetes and coronary artery disease, a 16 week randomised, double-blind, placebo-controlled study [abstract no. 498-P]. Diabetes 2005 Jun; 54 Suppl. 1: 123

    Article  Google Scholar 

  71. Shinall S, Buse J, Tan M, et al. Glycaemic and lipid effects of pioglitazone and rosiglitazone in patients naive to oral antidiabetic medications [abstract no. 1160]. Diabetologia 2006; 49 Suppl. 1:703–4. Plus a poster presented at the 42nd meeting of the European Association for the Study of Diabetes; 2006 Sep 14–17; Copenhagen

    Google Scholar 

  72. Osei K, Gaillard T, Cook C, et al. Thiazolidinediones (TZD) increase plasma adiponectin (ADIP) levels but not tissue ADIPO and ADIPO receptor Rl and R2 gene expression in African-Americans (AA) [abstract no. P729]. Diabet Med 2006 Dec 1; 23 Suppl. 4: 270

    Google Scholar 

  73. Seber S, Ucak S, Basat O, et al. The effect of dual PPAR alpha/ gamma stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in type 2 diabetic patients. Diabetes Res Clin Pract 2006 Jan; 71(1): 52–8

    Article  PubMed  CAS  Google Scholar 

  74. Normén L, Frolich J, Montaner J, et al. Combination therapy with fenofibrate and rosiglitazone paradoxically lowers serum HDL cholesterol. Diabetes Care 2004 Sep; 27(9): 2241–2

    Article  PubMed  Google Scholar 

  75. Zhang H, Zhang A, Kohan DE, et al. Collecting duct-specific deletion of peroxisome proliferator-activated receptor γ blocks thiazolidinedione-induced fluid retention. Proc Natl Acad Sci U S A 2005 Jun 28; 102(26): 9406–11

    Article  PubMed  CAS  Google Scholar 

  76. Grey A, Bolland M, Gamble G, et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmeno-pausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007 Apr; 92(4): 1305–10

    Article  PubMed  CAS  Google Scholar 

  77. Ali AA, Weinstein RS, Stewart SA, et al. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005 Mar; 146(3): 1226–35

    Article  PubMed  CAS  Google Scholar 

  78. Pasco JA, Henry MJ, Nicholson GC. Weight gain may contribute to increased fracture risk in women treated with rosigltazone. Diabet Med 2007 Oct; 24(10): 1173–4

    Article  PubMed  CAS  Google Scholar 

  79. GlaxoSmithKline. AVANDIA (rosiglitazone maleate) tablets: prescribing information [online]. Available from URL: http://www.fda.gov/cder/foi/label/2007/021071s0311b1.pdf [Accessed 2007 Nov 20]

  80. Patel BR, Diringer K, Conrad J, et al. Population pharmaco-kinetics of rosiglitazone in phase III clinical trials [abstract no. PII-33]. Clin Pharmacol Ther 2000; 67(2): 123

    Google Scholar 

  81. DiCicco R, Freed M, Allen A, et al. A study of the effect of age on the pharmacokinetics of BRL 49653C in healthy volunteers [abstract no. 24]. J Clin Pharmacol 1995 Sep; 35: 926

    Google Scholar 

  82. Miller AK, Inglis AL, Thompson K, et al. Effect of hepatic impairment on the pharmacokinetics (PK) of rosiglitazone (RSG) [abstract no. PIII-37]. Clin Pharmacol Ther 1999 Feb; 65(2): 186

    Article  Google Scholar 

  83. Cox PJ, Ryan DA, Hollis FJ, et al. Absorption, disposition, and metabolism of rosiglitazone, a potent thiazolidinedione insulin sensitizer, in humans. Drug Metab Dispos 2000 Jul; 28(7): 772–80

    PubMed  CAS  Google Scholar 

  84. Baldwin SJ, Clarke SE, Chenery RJ. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 1999 Sep; 48(3): 424–32

    Article  PubMed  CAS  Google Scholar 

  85. Chaplesky MC, Thompson-Culkin K, Miller AK, et al. Pharmacokinetics of rosiglitazone in patients with varying degrees of renal insufficiency. J Clin Pharmacol 2003 Mar; 43(3): 252–9

    Article  CAS  Google Scholar 

  86. Thompson-Culkin K, Zussman B, Miller AK, et al. Pharmacokinetics of rosiglitazone in patients with end-stage renal disease. J Int Med Res 2002 Jul–Aug; 30(4): 391–9

    PubMed  CAS  Google Scholar 

  87. Home PD, Bailey CJ, Donaldson J, et al. A double-blind randomized study comparing the effects of continuing or not continuing rosiglitazone + metformin therapy when starting insulin therapy in people with type 2 diabetes. Diabet Med 2007 Apr 2; 24(6): 618–25

    Article  PubMed  CAS  Google Scholar 

  88. Rosenstock J, Ferreira-Cornwell C, Weston WM, et al. Rosiglitazone added early to glimepiride provides superior glycémie control than uptitration of glimepiride alone in type 2 diabetes (T2DM) [abstract no. 549-P]. Diabetes 2005; 54 Suppl. 1: A 136. Plus poster presented at the 65th Scientific Sessions of the American Diabetes Association; 2005 Jun 10–14; San Diego (CA)

    Google Scholar 

  89. Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens 2006 Oct; 24(10): 2047–55

    Article  PubMed  CAS  Google Scholar 

  90. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes (RECORD): study design and protocol. Diabeto-logia 2005 Sep; 48(9): 1726–35

    Article  CAS  Google Scholar 

  91. Rosak C, Standl E, Reblin T, et al. Rosiglitazone is effective and well-tolerated in a range of therapeutic regimens during daily practice in patients with type 2 diabetes. Int J Clin Pract 2006 Sep; 60(9): 1040–7

    Article  PubMed  CAS  Google Scholar 

  92. Electronic Medicines Compendium. Avandia 4mg and 8mg tablets: summary of product characteristics [online]. Available from URL: http://www.emc.medicines.org.uk/emc/assets/c/html/displayDocPrinterFriendly.asp?documentid=3200 [Accessed 2007 Jul 2]

  93. Viberti G, Kahn SE, Greene DA, et al. A Diabetes Outcome Progression Trial (ADOPT): an international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care 2002 Oct; 25(10): 1737–43

    Article  PubMed  CAS  Google Scholar 

  94. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes: an interim analysis. N Engl J Med 2007 Jul 5; 357(1): 28–38

    Article  PubMed  CAS  Google Scholar 

  95. European Medicines Agency. Galvus®: prescribing information [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/galvus/H-771-PI-en.pdf [Accessed 2007 Oct 5]

  96. European Medicines Agency. European Medicines Agency confirms positive benefit-risk balance for rosiglitazone and pioglitazone [online]. Available from URL: http://www.emea.europa.eu/pdfs/human/press/pr/48427707en.pdf [Accessed 2007 22 Nov]

  97. European Medicines Agency. Committee for Medicinal Products for Human Use: post-authorisation summary of positive opinion for Avandia [online]. Available from URL: http://www.emea.europa.eu/pdfs/human/opinion/avandia_30697207en.pdf [Accessed 2007 Oct 30]

  98. European Medicines Agency. Avandamet: summary of product characteristics [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/avandamet/H-522-PI-en.pdf [Accessed 2007 Jul 2]

  99. Vinik AI, Zhang Q. Adding insulin glargine versus rosiglitazone: health-related quality-of-life impact in type 2 diabetes. Diabetes Care 2007; 30(4): 795–800

    Article  PubMed  CAS  Google Scholar 

  100. Tilden DP, Mariz S, O’Bryan-Tear G, et al. A lifetime modelled economic evaluation comparing pioglitazone and rosiglitazone for the treatment of type 2 diabetes mellitus in the UK [published erratum appears in Pharmacoeconomics 2007; 25(3): 237]. Pharmacoeconomics 2007; 25(1): 39–54

    Article  PubMed  Google Scholar 

  101. Beale S, Bagust A, Shearer AT, et al. Cost-effectiveness of rosiglitazone combination therapy for the treatment of type 2 diabetes mellitus in the UK. Pharmacoeconomics 2006; 24 Suppl. 1: 21–34

    Article  PubMed  CAS  Google Scholar 

  102. Shearer AT, Bagust A, Liebl A, et al. Cost-effectiveness of rosiglitazone oral combination for the treatment of type 2 diabetes in Germany. Pharmacoeconomics 2006; 24 Suppl. 1: 35–48

    PubMed  CAS  Google Scholar 

  103. Home P, Bagust A, Taylor M, et al. A lifetime modelled economic evaluation comparing pioglitazone and rosiglitazone for the treatment of type 2 diabetes mellitus in the UK. Pharmacoeconomics 2007; 25(9): 801–2

    Article  PubMed  Google Scholar 

  104. Tilden DP, Mariz S, O’Bryan-Tear G, et al. The author’s reply [letter]. Pharmacoeconomics 2007; 25(9): 802–5

    Article  Google Scholar 

  105. Charbonnel B, Schernthaner G, Brunetti P, et al. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes. Diabetologia 2005 Jun; 48(6): 1093–104

    Article  PubMed  CAS  Google Scholar 

  106. Wright A, Burden ACF, Paisey RB, et al. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the UK Prospective Study (UKPDS 57). Diabetes Care 2002 Feb; 25(2): 330–6

    Article  PubMed  CAS  Google Scholar 

  107. Liebl A, Neiss A, Spannheimer A, et al. Complications, comorbidity and blood glucose control in type 2 diabetes mellitus patients in Germany: results from the CODE-2 study. Exp Clin Endocrinol Diabetes 2002 Jan; 110(1): 10–6

    Article  PubMed  CAS  Google Scholar 

  108. Liebl A, Neiss A, Spannheimer A, et al. Costs of type 2 diabetes in Germany: results of the CODE-2 study. Dtsch Med Wochenschr 2001 May 18; 126(20): 585–9

    Article  PubMed  CAS  Google Scholar 

  109. Karalliedde J, Buckingham R, Starkie M, et al. Effect of various diuretic treatments on rosiglitazone-induced fluid retention. J Am Soc Nephrol 2006 Dec; 17(12): 3482–90

    Article  PubMed  CAS  Google Scholar 

  110. Boden G, Homko C, Mozzoli M, et al. Combined use of rosiglitazone and fenofibrate in patients with type 2 diabetes: prevention of fluid retention. Diabetes 2007 Jan; 56(1): 248–55

    Article  PubMed  CAS  Google Scholar 

  111. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes [published erratum appears in N Engl J Med 2007 Jul 5; 357(1): 100]. N Engl J Med 2007 Jun 14; 356(24): 2457–71

    Article  PubMed  CAS  Google Scholar 

  112. McAfee AT, Koro C, Landon J, et al. Coronary heart disease outcomes in patients receiving antidiabetic agents. Pharma-coepidemiol Drug Saf 2007 Jul; 16(7): 711–25

    Article  Google Scholar 

  113. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 2007 Sep 12; 298(10): 1189–95

    Article  PubMed  CAS  Google Scholar 

  114. GlaxoSmithKline Ltd. AVANDIA® cardiovascular event modeling project (study no. ZM2005/00181/01) and coronary heart disease outcomes in patients receiving antidiabetic agents (study no. HM2006/00497/00/WEUSRTP866) [online]. Available from URL: http://ctr.gsk.co.uk/Summary/rosig-litazone/studylist.asp [Accessed 2007 May 5]

  115. Rosen CJ. The rosiglitazone story: lessons from an FDA advisory committee meeting. N Engl J Med 2007 Aug 30; 357(9): 844–6

    Article  PubMed  CAS  Google Scholar 

  116. GlaxoSmithKline. Advisory committee briefing document: cardiovascular safety of rosiglitazone [online]. Available from URL: http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4308bl-01-sponsor-backgrounder.pdf [Accessed 2007 Oct 1]

  117. GlaxoSmithKline Ltd. AVANDAMET® (rosiglitazone maleate and metformin hydrochloride): US prescribing information [online]. Available from URL: http://www.fda.gov/cder/foi/label/2007/021410s0191bl.pdf [Accessed 2007 Jul 23]

  118. National Institute for Clinical Excellence. Guidance on the use of glitazones for the treatment of type 2 diabetes [online]. Available from URL: http://www.nice.org.uk/nicemedia/pdf/TA63_Glitazones_Review_Guidance.pdf [Accessed 2007 Jul 17]

  119. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998 Sep 12; 352(9131): 837–53

    Article  Google Scholar 

  120. The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study Group. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am J Cardiol 2007 Jun 18; 99 (12 Suppl. 1): 21–33i

    Google Scholar 

  121. International Diabetes Federation. Global guideline for type 2 diabetes [online]. Available from URL: http://www.idf.org/webdata/docs/IDF%20GGT2D.pdf [Accessed 2007 Jul 17]

  122. National Institute for Clinical Excellence. Clinical guidelines for type 2 diabetes: management of blood glucose [online]. Available from URL: http://guidance.nice.org.uk/download.aspx?o=36881 [Accessed 2007 Jul 17]

  123. American Diabetes Association. Standards of medical care in diabetes: 2007. Diabetes Care 2007 Jan; 30 Suppl. 1: S4–41

    Article  CAS  Google Scholar 

  124. American Association of Clinical Endocrinologists. Medical guidelines for clinical practice for the management of diabetes mellitus. Endocr Prac 2007 May–Jun 30; 13 Suppl. 1: 1–68

    Google Scholar 

  125. Ahrén B. Dipeptidyl peptidase-4 inhibitors: clinical data and clinical implications. Diabetes Care 2007 Jun; 30(6): 1344–50

    Article  PubMed  CAS  Google Scholar 

  126. Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr Med Res Opin 2007 Apr; 23(4): 945–52

    Article  PubMed  CAS  Google Scholar 

  127. Todd JF, Bloom SR. Incretins and other peptides in the treatment of diabetes. Diabet Med 2007 Mar; 24(3): 223–32

    Article  PubMed  CAS  Google Scholar 

  128. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006 Aug; 29(8): 1963–72

    Article  PubMed  Google Scholar 

  129. Lago RM, Singh PP, Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-anaylsis of randomised clinical trials. Lancet 2007 Sep 29; 370: 1129–36

    Article  PubMed  CAS  Google Scholar 

  130. Irons BK, Greene RS, Mazzolini TA, et al. Implications of rosiglitazone and pioglitazone on cardiovascular risk in patients with type 2 diabetes mellitus. Pharmacotherapy 2006 Feb; 26(2): 168–81

    Article  PubMed  CAS  Google Scholar 

  131. Diamond GA, Bax L, Kaul S. Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death [letter]. Ann Intern Med 2007 Oct 16; 147(8): 578–81

    PubMed  Google Scholar 

  132. Shuster JJ, Jones LS, Salmon DA. Fixed vs random effects meta-analysis in rare event studies: the rosiglitazone link with myocardial infarction and cardiac death. Stat Med 2007 Oct 30; 26(24): 4375–85

    Article  PubMed  Google Scholar 

  133. McCullough PA, Lepor NE. The rosiglitazone meta-analysis [published erratum appears in Rev Cardiovasc Med 2007; 8(3): 174]. Rev Cardiovasc Med 2007; 8(2): 123–6

    PubMed  Google Scholar 

  134. Magee MF, Isley WL. Rationale, design, and methods for glycemic control in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Trial. Am J Cardiol 2006 Jun 19; 97(12A): 20–30G

    Article  Google Scholar 

  135. European Medicines Agency. Post-authorisation evaluation of medicines for human use: questions and answers on the benefits and risks of rosiglitazone and pioglitazone [online]. Available from URL: http://www.emea.europa.eu/pdfs/human/press/pr/48446407en.pdf [Accessed 2007 Nov 1]

  136. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005 Oct 8; 366(9493): 1279–89

    Article  PubMed  CAS  Google Scholar 

  137. Lincoff AM, Wolski K, Nicholls SJ, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007 Sep 12; 298(10): 1180–8

    Article  PubMed  CAS  Google Scholar 

  138. Gerrits CM, Bhattacharya M, Manthena S, et al. A comparison of pioglitazone and rosiglitazone for hospitalization for acute myocardial infarction in type 2 diabetes. Pharmacoepidemiol Drug Saf 2007 Oct; 16(10): 1065–71

    Article  PubMed  Google Scholar 

  139. Psaty BM, Furberg CD. Rosiglitazone and cardiovascular risk. N Engl J Med 2007 Jun 14; 356(24): 2522–4

    Article  PubMed  CAS  Google Scholar 

  140. Nathan DM. Rosiglitazone and cardiotoxicity: weighing the evidence [letter]. N Engl J Med 2007 Jul 5; 357(1): 64–6

    Article  PubMed  CAS  Google Scholar 

  141. Takeda Pharmaceutical Company Ltd. ACTOS® (pioglitazone hydrochloride): prescribing information [online]. Available from URL: http://www.fda.gov/cder/foi/label/2007/021073s030lbl.pdf [Accessed 2007 Oct 1]

  142. Takeda Pharmaceutical Company Ltd. Re: Observation of an increased incidence of fractures in female patients who received long-term treatment with ACTOS® (pioglitazone HCl) tablets for type 2 diabetes mellitus [online]. Available from URL: http://www.fda.gov/medwatch/safety/2007/safety07.htm#Actos [Accessed 2007 Jul 20]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma D. Deeks.

Additional information

Various sections of the manuscript reviewed by: D. Bishop-Bailey, St Bartholomew’s and the Royal London School of Medicine and Dentistry, William Harvey Research Institute, London, UK; J. Eriksson, Diabetes and Genetic Epidemiology Unit, National Public Health Institute, Helsinki, Finland; E. Ferrannini, Department of Internal Medicine, University of Pisa, Pisa, Italy; B.K. Irons, Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Centre, Lubbock, Texas, USA; D. Severson, Pharmacology Department, University of Calgary, Calgary, Alberta, Canada.

Data Selection

Sources: Medical literature published in any language since 1980 on ‘rosiglitazone’, identified using MEDLINE and EMBASE, supplemented by AdisBase (a proprietary database of Wolters Kluwer Health | Adis). Additional references were identified from the reference lists of published articles. Bibliographical information, including contributory unpublished data, was also requested from the company developing the drug.

Search strategy: MEDLINE, EMBASE and AdisBase search terms were ‘rosiglitazone’ and (‘diabetes mellitus type 2’ or ‘diabetes mellitus non-insulin-dependent’ or ‘type-2-diabetes-mellitus’). Searches were last updated 20 November 2007.

Selection: Studies in patients with type 2 diabetes who received rosiglitazone. Inclusion of studies was based mainly on the methods section of the trials. When available, large, well controlled trials with appropriate statistical methodology were preferred. Relevant pharmacodynamic and pharmacokinetic data are also included.

Index terms: Rosiglitazone, type 2 diabetes mellitus, pharmacodynamics, pharmacokinetics, therapeutic use, tolerability, pharmacoeconomics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeks, E.D., Keam, S.J. Rosiglitazone. Drugs 67, 2747–2779 (2007). https://doi.org/10.2165/00003495-200767180-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767180-00008

Keywords

Navigation