Skip to main content
Log in

Biologic Therapy for Inflammatory Bowel Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite all of the advances in our understanding of the pathophysiology of inflammatory bowel disease (IBD), we still do not know its cause. Some of the most recently available data are discussed in this review; however, this field is changing rapidly and it is increasingly becoming accepted that immunogenetics play an important role in the predisposition, modulation and perpetuation of IBD. The role of intestinal milieu, and enteric flora in particular, appears to be of greater significance than previously thought. This complex interplay of genetic, microbial and environmental factors culminates in a sustained activation of the mucosal immune and non-immune response, probably facilitated by defects in the intestinal epithelial barrier and mucosal immune system, resulting in active inflammation and tissue destruction.

Under normal situations, the intestinal mucosa is in a state of ‘controlled’ inflammation regulated by a delicate balance of proinflammatory (tumour necrosis factor [TNF]-α, interferon [IFN]-γ, interleukin [IL]-1, IL-6, IL-12) and antiinflammatory cytokines (IL-4, IL-10, IL-11).

The mucosal immune system is the central effector of intestinal inflammation and injury, with cytokines playing a central role in modulating inflammation. Cytokines may, therefore, be a logical target for IBD therapy using specific cytokine inhibitors. Biotechnology agents targeted against TNF, leukocyte adhesion, T-helper cell (Th)-1 polarisation, T-cell activation or nuclear factor (NF)-κB, and other miscellaneous therapies are being evaluated as potential therapies for IBD. In this context, infliximab is currently the only biologic agent approved for the treatment of inflammatory and fistulising Crohn’s disease. Other anti-TNF biologic agents have emerged, including CDP 571, certolizumab pegol (CDP 870), etanercept, onercept and adalimumab. However, ongoing research continues to generate new biologic agents targeted at specific pathogenic mechanisms involved in the inflammatory process. Lymphocyte-endothelial interactions mediated by adhesion molecules are important in leukocyte migration and recruitment to sites of inflammation, and selective blockade of these adhesion molecules is a novel and promising strategy to treat Crohn’ s disease. Therapeutic agents that inhibit leukocyte trafficking include natalizumab, MLN-02 and alicaforsen (ISIS 2302). Other agents being investigated for the treatment of Crohn’s disease include inhibitors of T-cell activation, peroxisome proliferator-activated receptors, proinflammatory cytokine receptors and Th1 polarisation, and growth hormone and growth factors. Agents being investigated for treatment of ulcerative colitis include many of those mentioned for Crohn’s disease.

More controlled clinical trials are currently being conducted, exploring the safety and efficacy of old and new biologic agents, and the search certainly will open new and exciting perspectives on the development of therapies for IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table II
Fig. 5

Similar content being viewed by others

References

  1. Ferguson A. Ulcerative colitis and Crohn’s disease: important and disabling diseases, still under-researched. BMJ 1994; 309: 355–6

    Article  PubMed  CAS  Google Scholar 

  2. Hanauer SB, Present DH. The state of the art in the management of inflammatory bowel disease. Rev Gastroenterol Disord 2003; 3: 81–92

    PubMed  Google Scholar 

  3. Hanauer SB, Sandborn WJ. Practice Parameters Committee of the American College of Gastroenterology: management of Crohn’s disease in adults. Am J Gastroenterol 2001; 96: 635–43

    Article  PubMed  CAS  Google Scholar 

  4. Sandborn WJ, Feagan BG. Review article: mild to moderate Crohn’s disease: defining the basis for a new treatment algorithm. Aliment Pharmacol Ther 2003; 18: 263–77

    Article  PubMed  CAS  Google Scholar 

  5. Camma C, Giunta M, Rosselli M, et al. Mesalamine in the maintenance treatment of Crohn’s disease: a meta-analysis adjusted for confounding variables. Gastroenterology 1997; 113: 1465–73

    Article  PubMed  CAS  Google Scholar 

  6. Lochs H, Mayer M, Fleig WE, et al. Prophylaxis of postoperative relapse in Crohn’s disease: European Cooperative Crohn’s Disease Study VI. Gastroenterology 2000; 18: 264–73

    Article  Google Scholar 

  7. Stein RB, Hanauer SB. Medical therapy for inflammatory bowel disease. Gastroenterol Clin North Am 1999; 28: 297–321

    Article  PubMed  CAS  Google Scholar 

  8. Faubion Jr WA, Loftus Jr EV, Harmsen WS, et al. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology 2001; 123: 255–60

    Article  Google Scholar 

  9. Ardizzone S, Molteni P, Imbesi V, et al. Azathioprine in steroid-dependent ulcerative colitis. J Clin Gastroenterol 1997; 26: 330–3

    Article  Google Scholar 

  10. Ardizzone S, Maconi G, Russo A, et al. Randomised, controlled trial, of azathioprine and 5-aminosalicylic acid for treatment of steroid-dependent ulcerative colitis. Gut 2005 Jun 21. Epub ahead of print

  11. Pearson DC, May GR, Fick GH, et al. Azathioprine and 6-mercaptopurine in Crohn’s disease: a meta-analysis. Ann Intern Med 1995; 123: 132–42

    PubMed  CAS  Google Scholar 

  12. Pearson DC, May GR, Fick GH, et al. Azathioprine for maintaining remission of Crohn’s disease. Cochrane Database Syst Rev 2000; (2): CD000067

  13. D’Haens G, Lemmens L, Geboes K, et al. Intravenous cyclosporine versus intravenous corticosteroids as single therapy for severe attacks of ulcerative colitis. Gastroenterology 2001; 120: 1323–9

    Article  PubMed  Google Scholar 

  14. Present DH, Meltzer SJ, Krumholz MP, et al. 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med 1989; 111: 641–9

    PubMed  CAS  Google Scholar 

  15. Friedman S. General principles of medical therapy of inflammatory bowel disease. Gastroenterol Clin North Am 2004; 33: 191–208

    Article  PubMed  Google Scholar 

  16. Feagan BG, Rochon J, Fedorak RN, et al. Methotrexate for the treatment of Crohn’s disease: the North American Crohn’s Disease Study Group Investigators. N Engl J Med 1995; 332: 292–7

    Article  PubMed  CAS  Google Scholar 

  17. Feagan BG, Fedorak RN, Irvine EJ, et al. A comparison of methotrexate with placebo for the maintenance of remission in Crohn’s disease: North American Crohn’s Disease Study Group Investigators. N Engl J Med 2000; 342: 1627–32

    Article  PubMed  CAS  Google Scholar 

  18. Ardizzone S, Bollani S, Manzionna G, et al. Inflammatory bowel disease approaching the 3rd millennium: pathogenesis and therapeutic implications? Eur J Gastroenterol Hepatol 1999; 11: 27–32

    Article  PubMed  CAS  Google Scholar 

  19. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182–205

    Article  PubMed  CAS  Google Scholar 

  20. Lim W-C, Hanauer SB. Emerging biologic therapies in inflammatory bowel disease. Rev Gastroenterol Disord 2004; 4: 66–85

    PubMed  Google Scholar 

  21. Ardizzone S, Porro G. Inflammatory bowel disease: new insights into pathogenesis and therapy. J Intern Med 2002; 252: 475–96

    Article  PubMed  CAS  Google Scholar 

  22. Laroux FS, Pavlick KP, Wolf RE, et al. Dysregulation of intestinal mucosal immunity: implications in inflammatory bowel disease. News Physiol Sci 2001; 16: 272–7

    PubMed  CAS  Google Scholar 

  23. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599–603

    Article  PubMed  CAS  Google Scholar 

  24. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603–6

    Article  PubMed  CAS  Google Scholar 

  25. van Heel DA, McGovern DPB, Jewell DP. Crohn’s disease: genetic susceptibility, bacteria, and innate immunity. Lancet 2001; 357: 1902–4

    Article  PubMed  Google Scholar 

  26. Mahida YR, Johal S. NF-κB may determine whether epithelial cell-microbial interactions in the intestine are hostile or friendly. Clin Exp Immunol 2001; 123: 347–9

    Article  PubMed  CAS  Google Scholar 

  27. Beutler B. Autoimmunity and apoptosis: the Crohn’s connection. Immunity 2001; 15: 5–14

    Article  PubMed  CAS  Google Scholar 

  28. Jobin C, Sartor RB. NF-κB signalling protein as therapeutic targets for inflammatory bowel disease. Inflamm Bowel Dis 2000; 6: 206–13

    Article  PubMed  CAS  Google Scholar 

  29. Satsangi J, Welsh KI, Bunce M. Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet 1996; 347: 1212–7

    Article  PubMed  CAS  Google Scholar 

  30. Satsangi J, Parkes M, Louis E. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996; 14: 199–202

    Article  PubMed  CAS  Google Scholar 

  31. Futami S, Aoyama N, Honsako Y. HLA-DRB1*1502 allele, subtype of DR15, is associated with susceptibility to ulcerative colitis and its progression. Dig Dis Sci 1995; 40: 814–8

    Article  PubMed  CAS  Google Scholar 

  32. Roussomousstakaki M, Satsangi J, Welsh K. Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology 1997; 112: 1845–53

    Article  Google Scholar 

  33. Sandborn WJ, Landers CJ, Tremaine WJ, et al. Association of antineutrophil cytoplasmic antibodies with resistance to treatment of left-sided ulcerative colitis: results of a pilot study. Mayo Clin Proc 1996; 71: 431–6

    Article  PubMed  CAS  Google Scholar 

  34. Farrell RJ, Murphy A, Long A. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who failed medical therapy. Gastroenterology 2000; 118: 279–88

    Article  PubMed  CAS  Google Scholar 

  35. Orchard TR, Thiyagaraja S, Welsh KI, et al. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology 2000; 118: 274–8

    Article  PubMed  CAS  Google Scholar 

  36. Kyo K, Parkes M, Takei Y. Association of ulcerative colitis with rare VNTR alleles of the human intestinal mucin gene, MUC 3. Hum Mol Genet 1999; 11: 413–20

    Google Scholar 

  37. Papo M, Quer JC, Gutierrez C. Genetic heterogeneity within ulcerative colitis determined by an interleukin-1 receptor antagonist gene polymorphism and antineutrophil cytoplasmic antibodies. Eur J Gastroenterol Hepatol 1999; 118: 274–8

    Google Scholar 

  38. Shanahan F. Crohn’s disease. Lancet 2002; 359: 62–9

    Article  PubMed  CAS  Google Scholar 

  39. Sartor RB. Enteric microflora in IBD: pathogens or commensals? Inflamm Bowel Dis 1997; 3: 230–5

    Article  Google Scholar 

  40. Elliott DE, Urban Jr JF, Argo CK, et al. Does the failure to acquire helmintic parasites predispose to Crohn’s disease? FASEB J 2000; 4: 430–5

    Google Scholar 

  41. Franceschi S, Panza E, La Vecchia C, et al. Nonspecific inflammatory bowel disease and smoking. Am J Epidemiol 1987; 125: 445–52

    PubMed  CAS  Google Scholar 

  42. Lindberg E, Tysk C, Anderson K, et al. Smoking and inflammatory bowel disease: a case control study. Gut 1988; 29: 352–7

    Article  PubMed  CAS  Google Scholar 

  43. Miller LG, Goldstein G, Murphy M, et al. Reversible alterations in immunoregulatory T cells in smoking: analysis by monoclonal antibodies and flow cytometry. Chest 1982; 82: 526–9

    Article  PubMed  CAS  Google Scholar 

  44. Srivastava ED, Barton JR, O’Mahony S. Smoking, humoral immunity, and ulcerative colitis. Gut 1991; 32: 1016–9

    Article  PubMed  CAS  Google Scholar 

  45. Cope GF, Heatley RV, Kelleher JK. Smoking and colonic mucus in ulcerative colitis. BMJ (Clin Res Ed) 1986; 293: 481

    Article  CAS  Google Scholar 

  46. Coulie B, Camilleri M, Bharucha AE, et al. Colonic motility in chronic ulcerative proctosigmoiditis and the effects of nicotine on colonie motility in patients and healthy subjects. Aliment Pharmacol Ther 2001; 15: 653–63

    Article  PubMed  CAS  Google Scholar 

  47. Madretsma S, Wolters LM, van Dijk JP. In-vivo effect of nicotine on cytokine production by human non-adherent mononuclear cells. Eur J Gastroenterol Hepatol 1996; 8: 1017–20

    Article  PubMed  CAS  Google Scholar 

  48. Hollander D, Vadheim C, Brettholz E, et al. Increased intestinal permeability in patients with Crohn’s disease and their relatives. Ann Intern Med 1986; 105: 883–5

    PubMed  CAS  Google Scholar 

  49. Plevy S. the immunology of inflammatory bowel disease. Gastroenterol Clin North Am 2002; 31: 77–92

    Article  PubMed  Google Scholar 

  50. Goke M, Podolsky DK. Regulation of the mucosal epithelial barrier. Baillieres Clin Gastroenterol 1996; 10: 393–405

    Article  PubMed  CAS  Google Scholar 

  51. Fabia R, ArRajab A, Andersson M-L, et al. Impairment of bacterial flora in human ulcerative colitis and experimental colitis in the rat. Digestion 1993; 54: 248–55

    Article  PubMed  CAS  Google Scholar 

  52. Sartor R. Microbial factors in the pathogenesis of Crohn’s disease, ulcerative colitis, and experimental intestinal inflammation. In: Kirsner JB, editor: Inflammatory bowel disease. 5th ed. Philadelphia (PA): WB Saunders, 2000: 153–78

    Google Scholar 

  53. Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004; 126: 1620–33

    Article  PubMed  Google Scholar 

  54. Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996; 4: 430–5

    Article  PubMed  CAS  Google Scholar 

  55. Kreuis W, Schütz E, Fric P, et al. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 1997; 1: 853–8

    Article  Google Scholar 

  56. Rembacken BJ, Snelling AM, Hawkey PM, et al. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 1999; 354: 635–9

    Article  PubMed  CAS  Google Scholar 

  57. Kruis W, Kalk EK, Fric P, et al. Maintenance of remission in ulcerative colitis is equally effective with Escherichia coli Nissle 1917 and with standard mesalamine. Gastroenterology 2001; 120: A127

    Google Scholar 

  58. Ishikawa H, Akedo I, Umesaki Y, et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr 2003; 22: 56–63

    PubMed  Google Scholar 

  59. Gionchetti P, Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 2000; 119: 305–9

    Article  PubMed  CAS  Google Scholar 

  60. Gionchetti P, Rizzello F, Helwig U, et al. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind placebo controlled trial. Gastroenterology 2003; 124: 1202–9

    Article  PubMed  Google Scholar 

  61. Malchow HA. Crohn’s disease and Escherichia coli: a new approach in therapy to maintain remission of colonie Crohn’s disease? J Clin Gastroenterol 1997; 25: 653–8

    Article  PubMed  CAS  Google Scholar 

  62. Prantera C, Scribano ML, Falasco G, et al. Ineffectiveness of probiotics in preventing recurrence after curative resection for Crohn’s disease: a randomised controlled trial with Lactobacillus GG. Gut 2002; 51: 405–9

    Article  PubMed  CAS  Google Scholar 

  63. Guandalini S. Use of Lactobacillus GG in pediatric Crohn’s disease. Dig Liver Dis 2002; 34 Suppl. 2: S63–5

    Article  PubMed  Google Scholar 

  64. Summers RW, Elliott DE, Qadir K, et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 2003; 98: 2034–41

    Article  PubMed  Google Scholar 

  65. Summers RW, Elliott DE, Urnab JF, et al. Trichuris suis therapy in Crohn’s disease. Gut 2005; 54: 87–90

    Article  PubMed  CAS  Google Scholar 

  66. Summers RW, Elliot D, Thompson R, et al. Double-blind, placebo-controlled trial of helminth ova therapy in active ulcerative colitis [abstract]. Gastroenterology 2004; 126: A83

    Google Scholar 

  67. Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157: 1261–70

    CAS  Google Scholar 

  68. Farrell JR, Peppercorn MA. Ulcerative colitis. Lancet 2002; 359: 331–40

    Article  PubMed  Google Scholar 

  69. Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am J Gastroenterol 1997; 92 (12 Suppl.): S5–11

    Google Scholar 

  70. Duchmann R, May E, Heike M, et al. T cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident intestinal flora in humans. Gut 1999; 44: 812–8

    Article  PubMed  CAS  Google Scholar 

  71. Elson CO, Mestecky JF. The mucosal immune system. In: Blaser MJ, Smith PD, Ravdin JI, et al., editors. Infections of the gastrointestinal tract. 1st ed. New York: Lippincott Williams and Wilkins, 1995: 153

    Google Scholar 

  72. Schuppan D, Hahn EG. MMPs in the gut: inflammation hits the matrix. Gut 2000; 47: 12–4

    Article  PubMed  CAS  Google Scholar 

  73. Pender SL, Tickle SP, Docherty AJ, et al. A major role of matrix metalloproteinases in T cell injury in the gut. J Immunol 1997; 158: 1582–90

    PubMed  CAS  Google Scholar 

  74. Powrie F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity 1995; 3: 171–4

    Article  PubMed  CAS  Google Scholar 

  75. Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med 2000; 192: 295–302

    Article  PubMed  CAS  Google Scholar 

  76. Boirivant M, Marini M, Di Felice G, et al. Lamina propria T cell in Crohn’s disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 1999; 116: 557–65

    Article  PubMed  CAS  Google Scholar 

  77. Ina K, Itoh J, Fukushima K, et al. Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a Bcl-2/ Bax mucosal imbalance. J Immunol 1999; 163: 1081–90

    PubMed  CAS  Google Scholar 

  78. Atreya R, Mudter J, Finotto S, et al. Blockade of interleukin 6 trans signalling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn’s disease and experimental colitis in vivo. Nat Med 2000; 6: 583–8

    Article  PubMed  CAS  Google Scholar 

  79. Boirivant M, Pica R, De Maria R, et al. Stimulated human lamina propria T cells manifest enhanced Fas-mediated apoptosis. J Clin Invest 1996; 98: 2616–22

    Article  PubMed  CAS  Google Scholar 

  80. Ueyama H, Kiyohara T, Sawada N, et al. Fas ligand expression on lymphocytes in lesions of ulcerative colitis. Gut 1998; 43: 48–55

    Article  PubMed  CAS  Google Scholar 

  81. Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–74

    Article  PubMed  CAS  Google Scholar 

  82. Schreiber S, Heinig T, Thiele HG, et al. A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 1995; 108: 1434–44

    CAS  Google Scholar 

  83. Gordon MS, McCaskill-Stevens WJ, Battiato LA, et al. A phase I trial of recombinant human interleukin-11 (neumega rhIl-11 growth factor) in women with breast cancer receiving chemotherapy. Blood 1996; 87: 3615–24

    PubMed  CAS  Google Scholar 

  84. Trepicchio WL, Bozza M, Pedneault G, et al. Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J Immunol 1996; 157: 3627–34

    PubMed  CAS  Google Scholar 

  85. Keith JC, Albert L, Sonis ST, et al. IL-11, a pleiotropic cytokine: exciting new effects of IL-11 on gastrointestinal mucosal biology. Stem Cells 1994; 12 Suppl. 1: 79–89

    PubMed  Google Scholar 

  86. Potten CS. Protection of the small intestine clonogenic stem cells from radiation-induced damage by pretreatment with interleukin 11 also increases murine survival time. Stem Cells 1996; 14: 452–9

    Article  PubMed  CAS  Google Scholar 

  87. Qiu BS, Pfeiffer CJ, Keith Jr JC. Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats. Dig Dis Sci 1996; 41: 1625–30

    Article  PubMed  CAS  Google Scholar 

  88. Keith Jr JC, Albert LM, Ferranti TJ, et al. Recombinant human interleukin-11 (rhIL-11) decreases inflammatory bowel disease in HLA-B27 transgenic rats [abstract]. Gastroenterology 1995; 108: A846

    Google Scholar 

  89. Neurath MF, Fuss I, Kelsall BL, et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 1995; 182: 1281–90

    Article  PubMed  CAS  Google Scholar 

  90. MacDonald TT, Monteleone G. Interleukin-12 and Th1 immune responses in human Peyer’s patches. Trends Immunol 2001; 22: 244–7

    Article  PubMed  CAS  Google Scholar 

  91. Pizarro TT, Michie MH, Bentz M, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol 1999; 162: 6829–35

    PubMed  CAS  Google Scholar 

  92. Siegmund B, Fantuzzi G, Rieder F, et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ gamma and TNF-alpha production. Am J Physiol Regul Integr Comp Physiol 2001; 281: R1264–73

    PubMed  CAS  Google Scholar 

  93. Sartor RB. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology 1994; 106: 533–9

    PubMed  CAS  Google Scholar 

  94. Amati L, Caradonna L, Jirillo E, et al. Immunological disorders in inflammatory bowel disease and immunotherapeutic implications. Ital J Gastroenterol Hepatol 1999; 31: 313–25

    PubMed  CAS  Google Scholar 

  95. Papadakis CA, Targan SA. Tumor necrosis factor: biology and therapeutic inhibitors. Gastroenterology 2000; 119: 1148–57

    Article  PubMed  CAS  Google Scholar 

  96. Blam ME, Stein RBS, Lichtenstein GR. Integrating anti-tumor necrosis factor therapy in inflammatory bowel disease: current and future perspectives. Am J Gastroenterol 2001; 96: 1977–97

    PubMed  CAS  Google Scholar 

  97. Lukacs NW, Chensue SW, Strieter RM, et al. Inflammatory granuloma formation is mediated by TNF-alpha-inducible intercellular adhesion molecule-1. J Immunol 1994; 152: 5883–9

    PubMed  CAS  Google Scholar 

  98. Alexopulou L, Pasparikis M, Kollias G. A murine transmembrane tumour necrosis factor (TNF) transgene induces arthritis by cooperative p55/p75 TNF receptor signaling. Eur J Immunol 1997; 27: 2588–92

    Article  Google Scholar 

  99. van Deventer SJH. A place for TACE. Gut 2002; 51: 5–6

    Article  PubMed  Google Scholar 

  100. Moss ML, Jin SL, Milla ME. Cloning of a disintegrin metal-loproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997; 385: 733–6

    Article  PubMed  CAS  Google Scholar 

  101. Black RA, Rauch CT, Kozlosky CJ. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997; 385: 729–33

    Article  PubMed  CAS  Google Scholar 

  102. Brynskov J, Foegh P, Pedersen G, et al. Tumour necrosis factor α converting enzyme (TACE) activity in the colonic mucosa of patients with inflammatory bowel disease. Gut 2002; 51: 37–43

    Article  PubMed  CAS  Google Scholar 

  103. Kishimoto T. The biology of interleukin-6. Blood 1980; 74: 1–10

    Google Scholar 

  104. Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol 1993; 54: 1–78

    Article  PubMed  CAS  Google Scholar 

  105. Yamamoto M, Yoshozaki K, Kishimoto T, et al. IL-6 is required for the development of Th1 cell-mediated murine colitis. J Immunol 2000; 164: 4878–82

    PubMed  CAS  Google Scholar 

  106. Atreya R, Mudter J, Finotto S, et al. Blockade of interleukin 6 trans signalling suppressor T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn’s disease and experimental colitis in vivo. Nat Med 2000; 6: 583–8

    Article  PubMed  CAS  Google Scholar 

  107. Mangelsdorf DJ, Thummel C, Beato M. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–9

    Article  PubMed  CAS  Google Scholar 

  108. Fajas L, Auboeuf D, Raspe E. The organization, promoter analysis, and expression of the human PPArgamma gene. J Biol Chem 1997; 272: 19779–89

    Article  Google Scholar 

  109. Su CG, Wen X, Bailey ST. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999; 104: 383–9

    Article  PubMed  CAS  Google Scholar 

  110. Dubuquoy L, Bourdon C, Peuchmaur M. Peroxisome proliferator-activated receptor (PPAR) gamma: a new target for the treatment of inflammatory bowel disease. Gastroenterol Clin Biol 2000; 24: 719–24

    PubMed  CAS  Google Scholar 

  111. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996; 272: 60–6

    Article  PubMed  CAS  Google Scholar 

  112. Sandborn WJ, Yednock TA. Novel approaches to treating inflammatory bowel disease: targeting alpha-4 integrin. Am J Gastroenterol 2003; 98: 2372–82

    Article  PubMed  CAS  Google Scholar 

  113. Sands BE. Biologic therapy for inflammatory bowel disease. Inflamm Bowel Dis 1997; 3: 95–113

    Google Scholar 

  114. Breedveld FC. Therapeutic monoclonal antibodies. Lancet 2000; 355: 735–40

    Article  PubMed  CAS  Google Scholar 

  115. Sands BE. Biologicals: principles, techniques and mechanisms of action. Acta Gastroenterol Belg 2001 Apr–Jun; 64(2): 165–9

    PubMed  CAS  Google Scholar 

  116. Ledley FD. Somatic gene therapy in gastroenterology: approaches and applications. J Pediatr Gastroenterol Nutr 1992; 14: 328–37

    Article  PubMed  CAS  Google Scholar 

  117. Askari FK, McDonnell WM. Antisense-oligonucleotide therapy. N Engl J Med 1996; 334: 316–8

    Article  PubMed  CAS  Google Scholar 

  118. Hogaboam CM, Vallance BA, Kumar A, et al. Therapeutic effects of interleukin-4 gene transfer in experimental inflammatory bowel disease. J Clin Invest 1997; 100: 2766–76

    Article  PubMed  CAS  Google Scholar 

  119. Sellon RK, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune e system activation in interleukin-10-deficient mice. Infect Immun 1998; 66: 5224–31

    PubMed  CAS  Google Scholar 

  120. Lindsay JO, Ciesielski CJ, Schenin T, et al. The prevention and treatment of murine colitis using gene therapy with adenoviral vectors encoding IL-10. J Immunol 2001; 166: 7625–33

    PubMed  CAS  Google Scholar 

  121. Rogy MA, Beinhauer BG, Reinisch W, et al. Transfer of interleukin-4 and interleukin-10 in patients with severe inflammatory bowel disease of the rectum. Hum Gene Ther 2000; 11: 1731–41

    Article  PubMed  CAS  Google Scholar 

  122. Wirtz S, Becker C, Blumberg R, et al. Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA. J Immunol 2002; 168: 411–20

    PubMed  CAS  Google Scholar 

  123. Delves PJ, Roitt IM. The immune system: second of two parts. N Engl J Med 2000; 343: 108–17

    Article  PubMed  CAS  Google Scholar 

  124. BioPortfolio. IDEC (NASDAQ: IDPH) has halted clinical trials of its therapeutic monoclonal antibody IDEC-131 [online]. Available from URL: http://www.bioprtfolio.com/news/btech_061102_l_.htm [Accessed 2004 Mar 22]

  125. Deusch K, Mauthe B, Reiter C, et al. CD4-antibody treatment of inflammatory bowel disease: one year follow-up [abstract]. Gastroenterology 1993; 104: A691

    Google Scholar 

  126. Stronkhorst A, Radema S, Yong SL, et al. CD4 antibody treatment in patients with active Crohn’s disease: a phase I dose finding study. Gut 1997; 40: 320–7

    PubMed  CAS  Google Scholar 

  127. Emmrich J, Seyfarth M, Fleig WE, et al. Treatment of inflammatory bowel disease with anti-CD4 monoclonal antibody. Lancet 1991; 338: 570–1

    Article  PubMed  CAS  Google Scholar 

  128. Emmrich J, Seyfarth M, Liebe S, et al. Anti-CD6 antibody treatment in inflammatory bowel disease without a long CD4+-cell depletion [abstract]. Gastroenterology 1995; 108: A815

    Google Scholar 

  129. Canva-Delcambre V, Jacquot S, Robinet E, et al. Treatment of severe Crohn’s disease with anti-CD4 monoclonal antibody. Aliment Pharmacol Ther 1996; 10: 721–7

    Article  PubMed  CAS  Google Scholar 

  130. Cole MS, Stellrecht KE, Shi JD, et al. HuM291, a humanized nanti-CD3 monoclonal antibody, is immunosuppressive to T cells while exhibiting reduced mitogenicity in vitro. Transplantation 1999; 68: 563–71

    Article  PubMed  CAS  Google Scholar 

  131. Plevy SE, Salzberg BA, Reguiero M, et al. A humanized anti-CD3 monoclonal antibody, visilizumab, for treatment of severe steroid-refractory ulcerative colitis: preliminary results of a phase I study [abstract]. Gastroenterology 2003; 124: A7

    Article  Google Scholar 

  132. Dignass AU, Targan S, Salzberg B, et al. Visilizumab, a humanized anti-CD3 monoclonal antibody is active in the treatment of severe steroid-refractory ulcerative colitis (UC): preliminary results of a phase I–II study [abstract]. Gut 2004; 53 Suppl. VI: A55

    Google Scholar 

  133. van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease: Crohn’s Disease Study Group. Gastroenterology 1997; 113: 383–9

    Article  PubMed  Google Scholar 

  134. Schreiber S, Fedorak RN, Nielsen OH, et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Gastroenterology 2000; 119: 1462–72

    Google Scholar 

  135. Fedorak RN, Gangl A, Elson CO, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. Gastroenterology 2000; 119: 1473–82

    Article  PubMed  CAS  Google Scholar 

  136. Fedorak NR, Nielsen OH, Williams NC, et al. Human recombinant interleukin-10 is safe and well tolerated but dose not induce remission in steroid dependent Crohn’s disease [abstract]. Gastroenterology 2001; 120: A127

    Google Scholar 

  137. Schreiber S, Fedorak NR, Wild G, et al. Safety and tolerance of rHuIL-10 treatment in patients with mild/moderate active ulcerative colitis: Ulcerative Colitis IL-10 Cooperative Study Group [abstract]. Gastroenterology 1998; 114: A1080–1

    Google Scholar 

  138. Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukion-10. Science 2000; 289: 1352–5

    Article  PubMed  CAS  Google Scholar 

  139. Sands BE, Bank S, Sninsky CA, et al. Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease. Gastroenterology 1999; 117: 58–64

    Article  PubMed  CAS  Google Scholar 

  140. Sands BE, Winston B, Salzberg B, et al. Randomized, controlled trial of recombinant human interleukin 11 in patients with active Crohn’s disease. Aliment Pharmacol Ther 2002; 16: 399–406

    Article  PubMed  CAS  Google Scholar 

  141. Herrlinger K, Witthoeft T, Raedler A, et al. Randomized, double-blind, double-dummy, controlled trial of subcutaneous recombinant human interleukin-11 versus prednisolone in active Crohn’s disease [abstract]. Gastroenterology 2004; 126: A466

    Article  Google Scholar 

  142. Van Dullemen HM, van Deventer SJH, Hommes DW, et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 1995; 109: 129–35

    Article  PubMed  Google Scholar 

  143. McCabe RP, Woody J, van Deventer SJH, et al. A multicenter trial of cA2 anti-TNF chimeric monoclonal antibody in patients with active Crohn’s disease [abstract]. Gastroenterology 1996; 110: A962

    Google Scholar 

  144. Targan SR, Hanauer SB, van Deventer SJH, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn’s disease. N Engl J Med 1997; 337: 1029–35

    Article  PubMed  CAS  Google Scholar 

  145. Rutgeerts P, D’Haens G, Targan S, et al. Efficacy and safety or retreatment with anti-tumor necrosis factor antibody (inflix-imab) to maintain remission in Crohn’s disease. Gastroenterology 1999; 117: 761–9

    Article  PubMed  CAS  Google Scholar 

  146. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 2002; 359: 1541–9

    Article  PubMed  CAS  Google Scholar 

  147. Rutgeerts P, Feagan BG, Lichtenstein GR, et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn’s disease. Gastroenterology 2004; 126: 402–13

    Article  PubMed  CAS  Google Scholar 

  148. D’Haens G, van Deventer S, van Hogezand R. Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn’s disease: a European multicenter trial. Gastroenterology 1999; 116: 1029–34

    Article  PubMed  Google Scholar 

  149. Present DH, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999; 340: 1398–405

    Article  PubMed  CAS  Google Scholar 

  150. Ardizzone S, Maconi G, Colombo E, et al. Perianal fistulae following infliximab treatment: clinical and endosonographic outcome. Inflamm Bowel Dis 2004; 10: 91–6

    Article  PubMed  Google Scholar 

  151. Sands BE, Anderson FH, Bernstein CN, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 2004; 350: 876–85

    Article  PubMed  CAS  Google Scholar 

  152. Cohen RD, Tsang JF, Hanauer SB. Infliximab in Crohn’s disease: first anniversary clinical experience. Am J Gastroenterol 2000; 95: 3469–77

    Article  PubMed  CAS  Google Scholar 

  153. Farrell RJ, Shah SA, Lodhavia PJ, et al. Clinical experience with infliximab therapy in 100 patients with Crohn’s disease. Am J Gastroenterol 2000; 95: 3490–7

    Article  PubMed  CAS  Google Scholar 

  154. Ricart E, Panaccione R, Loftus EV, et al. Infliximab for Crohn’s disease in clinical practice at the Mayo Clinic: the first 100 patients. Am J Gastroenterol 2001; 96: 722–9

    Article  PubMed  CAS  Google Scholar 

  155. Arnott IDR, McDonald D, Williams A, et al. Clinical use of infliximab in Crohn’s disease: the Edinburgh experience. Aliment Pharmacol Ther 2001; 15: 1639–46

    Article  PubMed  CAS  Google Scholar 

  156. Hommes DW, van de Heisteeg BH, van der Spek M, et al. Infliximab treatment for Crohn’s disease: one-year experience in a Dutch Academic Hospital. Inflamm Bowel Dis 2002; 8: 81–6

    Article  PubMed  Google Scholar 

  157. Ardizzone S, Colombo E, Maconi G, et al. Infliximab in treatment of Crohn’s disease: the Milan expierence. Dig Liver Dis 2002; 34: 411–8

    Article  PubMed  CAS  Google Scholar 

  158. Orlando A, Colombo E, Kohn A, et al. Infliximab in the treatment of Crohn’s disease: predictors of response in Italian multicentric open study. Dig Liv Dis 2005; 37(8): 577–83

    Article  CAS  Google Scholar 

  159. Ricart E, Panaccione R, Loftus EV, et al. Successful management of Crohn’s disease of the ileoanal pouch with infliximab. Gastroenterology 1999; 117: 429–32

    Article  PubMed  CAS  Google Scholar 

  160. Colombel JF, Ricart E, Loftus Jr EV, et al. Management of Crohn’s disease (CD) of the ileoanal pouch with infliximab [abstract]. Gastroenterology 2003; 124: T1364

    Google Scholar 

  161. Chey WY. Infliximab for patients with refractory ulcerative colitis. Inflamm Bowel Dis 2001; 7 Suppl. 1: S30–3

    Article  PubMed  Google Scholar 

  162. Su C, Salzberg BA, Lewis JD, et al. Efficacy of anti-tumor necrosis factor therapy in patients with ulcerative colitis. Am J Gastroenterol 2002; 97: 2577–84

    Article  PubMed  CAS  Google Scholar 

  163. Sands BE, Tremaine WJ, Sandborn WJ, et al. Infliximab in the treatment of severe, steroid-refractory ulcerative colitis: a pilot study. Inflamm Bowel Dis 2001; 7: 83–8

    Article  PubMed  CAS  Google Scholar 

  164. Probert CS, Hearing SD, Schreiber S, et al. Infliximab in moderately severe glucocorticosteroid resistant ulcerative colitis: a randomised controlled trial. Gut 2003; 52: 998–1002

    Article  PubMed  CAS  Google Scholar 

  165. Actis GC, Bruno M, Pinna-Pintor M, et al. Infliximab for treatment of steroid-refractory ulcerative colitis. Dig Liver Dis 2002 Sep; 34: 631–4

    Article  PubMed  CAS  Google Scholar 

  166. Kohn A, Prantera C, Pera A, et al. Anti-tumour necrosis factor alpha (infliximab) in the treatment of severe ulcerative colitis: result of an open study on 13 patients. Dig Liver Dis 2002; 34: 626–30

    Article  PubMed  CAS  Google Scholar 

  167. Ochsenkun T, Sackman M, Goeke B. Infliximab for acute severe ulcerative colitis: a randomized pilot study in non steroid refractory patients [abstract]. Gastroenterology 2003; 124: A62

    Article  Google Scholar 

  168. Rutgeerts P, Feagan BG, Olson A, et al. A randomised, placebo-controlled trial of infliximab therapy for active ulcerative colitis: Act I trial [abstract]. Gastroenterology 2005; 128: A689

    Article  CAS  Google Scholar 

  169. Sandborn WJ, Rachmilewitz D, Hanauer SB, et al. Infliximab induction and maintenance therapy for active ulcerative colitis: the Act 2 trial [abstract]. Gastroenterology 2005; 128: A688

    Google Scholar 

  170. Gornet JM, Couve S, Hassani Z, et al. Infliximab for refractory ulcerative colitis or indeterminate colitis: an open-label multicentre study. Aliment Pharmacol Ther 2003; 18: 175–81

    Article  PubMed  CAS  Google Scholar 

  171. Papadakis KA, Treyzone L, Abreu MT, et al. Infliximab in the treatment of medically refractory indeterminate colitis. Aliment Pharmacol Ther 2003; 18: 741–7

    Article  PubMed  CAS  Google Scholar 

  172. Reguiero M, Valentine J, Plevy S, et al. Infliximab fro treatment of pyoderma gangrenosum associated with inflammatory bowel disease. Am J Gastroenterol 2003; 98: 1821–6

    Article  Google Scholar 

  173. Ardizzone S, Bollani S, Colombo E, et al. Infliximab for the treatment of pyoderma gangrenosum (PG) in steroid-dependent ulcerative colitis (UC): a case report [abstract]. Gut 49 Suppl. III: A3190

  174. Lyons JL, Rosenbraun JT. Uveitis associated with inflammatory bowel disease compared with uveitis associated with spondyloarthropathy. Arch Ophthalmol 1997; 115: 61–4

    Article  PubMed  CAS  Google Scholar 

  175. Van den Bosch F, Kruithof E, De Vos M, et al. Crohn’s disease associated with spondyloarthropathy: effect of anti-TNF-alpha blockade with infliximab on articular symptoms. Lancet 2000; 356: 1821–2

    Article  PubMed  Google Scholar 

  176. Sandborn WJ, Faubion WA. Biologics in inflammatory bowel disease: how much progress have we made? Gut 2004; 53: 1366–73

    Article  PubMed  CAS  Google Scholar 

  177. Sarzi Puttini P, Ardizzone S, Manzionna G, et al. Infliximab-induced lupus in Crohn’s disease: a case report. Dig Liver Dis 2003; 35: 814–7

    Article  PubMed  CAS  Google Scholar 

  178. Rutgeerts P, Van Assche G, Vermeire S. Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology 2004; 126: 1593–610

    Article  PubMed  CAS  Google Scholar 

  179. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 2003; 348: 601–8

    Article  PubMed  CAS  Google Scholar 

  180. Parsi MA, Achkar JP, Richardson S, et al. Predictors of response to infliximab in patients with Crohn’s disease. Gastroenterology 2002; 123: 707–13

    Article  PubMed  CAS  Google Scholar 

  181. Vermeire S, Louis E, Carbonez A, et al. Logistic regression of clinical parameters influencing response to infliximab. Am J Gastroenterol 2002; 97: 2357–63

    Article  PubMed  CAS  Google Scholar 

  182. Taylor KD, Plevy SE, Yang H, et al. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn’s disease. Gastroenterology 2001; 120: 1347–55

    Article  PubMed  CAS  Google Scholar 

  183. Esters N, Vermeire S, Joossens S, et al. Sierological markers for prediction of response to anti-tumor necrosis factor treatment in Crohn’s disease. Am J Gastroenterol 2002; 97: 1458–62

    Article  PubMed  CAS  Google Scholar 

  184. Vermeire S, Louis E, Rutgeerts P, et al. The NOD2 gene does not influence response to infliximab in Crohn’s disease. Gastroenterology 2002; 123: 106–11

    Article  PubMed  CAS  Google Scholar 

  185. Mascheretti S, Hampe J, Croucher PJ, et al. Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD 15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics 2002; 12: 509–12

    Article  PubMed  CAS  Google Scholar 

  186. Louis E, Vermeire S, Rutgeerts P, et al. A positive response to infliximab in Crohn’s disease: association with higher systemic inflammation before treatment but not with −308 TNF gene polymorphism. Scand J Gastroenterol 2002; 37: 818–24

    PubMed  CAS  Google Scholar 

  187. Sandborn WJ, Feagan BGG, Hanauer SB, et al. An engineered human antibody to TNF (CDP571) for active Crohn’s disease: a randomised, placebo-controlled trial. Gastroenterology 2001; 120: 1330–8

    Article  PubMed  CAS  Google Scholar 

  188. Sandborn WJ, Feagan BG, Radford-Smith G, et al. CDP571, a humanised monoclonal antibody to tumour necrosis factor alpha, for moderate to severe Crohn’s disease: a randomised, double blind, placebo controlled trial. Gut 2004 Oct; 53(10): 1485–93

    Article  PubMed  CAS  Google Scholar 

  189. Feagan BG, Sandborn WJ, Baker J, et al. A randomized, double-blind, placebo-controlled trial of CDP571, of steroid sparing and maintenance of remission in patients with steroid-dependent Crohn’s disease [abstract]. Gastroenterology 2000; 118: A655

    Article  Google Scholar 

  190. Celltech announces results from CDP571 phase III studies in Crohn’s disease. Celltech: Internet press release, 2002 [online]. Available from URL: http://www.celltechgroup.com [Accessed 2004 Dec 14]

  191. Schreiber S, Rutgeerts P, Feorak R, et al. CDP870, a humanized anti-TNF antibody fragment, indices clinical response with remission in patients with active Crohn’s disease (CD) [abstract]. Gastroenterology 2003; 124: A61

    Article  Google Scholar 

  192. Winter T, Wright J, Ghosh S, et al. Intravenous CDP870, a humanized anti-TNF fragment, in patients with active Crohn’s disease: an exploratory study [abstract]. Gastroenterology 2003; 124: A377

    Article  Google Scholar 

  193. Iyer S, Kontoyannis D, Chevrier D, et al. Inhibition of tumor necrosis factor mRNA translation by a rationally designed immunomodulatory peptide. J Biol Chem 2000; 275: 17051–7

    Article  PubMed  CAS  Google Scholar 

  194. Murthy S, Flanigan A, Coppola D, et al. RDP58, a locally active TNF inhibitor, is effective in the dextran sulphate mouse model of chronic colitis. Inflamm Res 2002; 51: 522–31

    Article  PubMed  CAS  Google Scholar 

  195. Bourreille A, Doubremelle M, de la Bletiere DR, et al. RDP58, a novel immunomodulatory peptide with anti-inflammatory effects: a pharmacological study in trinitrobenzene sulphonic acid colitis and Crohn’s disease. Scand J Gastroenetrol 2003; 38: 526–32

    Article  CAS  Google Scholar 

  196. Travis SPL, Yap LM, Hawkey CJ, et al. RDP-58: novel and effective therapy, for ulcerative colitis: results of parallel, prospective, placebo-controlled trial [abstract]. Am J Gastroenterol 2003; 98: S239

    Article  Google Scholar 

  197. Sandborn WJ, Hanauer SB, Katz S, et al. Etanercept for active Crohn’s disease: a randomised, double-blind, placebo-controlled trial. Gastroenterology 2001; 121: 1088–94

    Article  PubMed  CAS  Google Scholar 

  198. Rutgeerts P, Lemmens I, van Assche G, et al. Treatment of active Crohn’s disease with onercept (recombinant human soluble p55 tumor necrosis factor receptor): results of a randomized, open-label, pilot study. Aliment Pharmacol Ther 2003; 17: 185–92

    Article  PubMed  CAS  Google Scholar 

  199. Data on file, Serono, 2003

  200. Sandborn WJ, Hanauer SB, Loftus EV, et al. An open-label study of the human anti-TNF monoclonal antibody adalimumab subjects with prior loss of response or intolerance to infliximab for Crohn’s disease. Am J Gastroenterol 2004; 99: 1984–9

    Article  PubMed  CAS  Google Scholar 

  201. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81: 807–69

    PubMed  CAS  Google Scholar 

  202. Hommes D, Van Den Blink B, Plasse B, et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology 2002; 122: 7–14

    Article  PubMed  CAS  Google Scholar 

  203. Lewis JD, Lichtenstein GR, Stein RB, et al. An open-label trial of the PPARγ ligand rosiglitazone for active ulcerative colitis. Am J Gastroenterol 2001; 96: 3323–8

    PubMed  CAS  Google Scholar 

  204. Ito H, Takazoe M, Fukuda Y, et al. Effective treatment of active Crohn’s disease with humanized monoclonal antibody MRA to interleukin-6 receptor: a randomized placebo-controlled trial [abstract]. Gastroenterology 2003; 124: A25

    Article  Google Scholar 

  205. van Assche G, Dalle I, Noman M, et al. A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenetrol 2003; 98: 369–76

    Article  Google Scholar 

  206. Creed TJ, Norman MR, Probert CS, et al. Basilixumab (anti-CD25) in combination with steroids may be an effective new treatment for steroid-resistant ulcerative colitis. Aliment Pharmacol Ther 2003; 18: 1865–75

    Article  Google Scholar 

  207. Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 2004; 35: 2069–79

    Article  Google Scholar 

  208. Holmes S, Abrahamson JA, Al-Mahdi N, et al. Characterization of the vitro and in vivo activity of monoclonal antibodies to human IL-18. Hybridoma 2000; 19: 363–7

    Article  PubMed  CAS  Google Scholar 

  209. Rutgeerts P, Reinisch W, Colombel JF, et al. Preliminary results of a phase I/II study of Huzaf, an anti-IFN-monoclonal antibody, in patients with moderate to severe active Crohn’s disease [abstract]. Gastroenterology 2002; 122: A61

    Google Scholar 

  210. Van Assche G, Pearce T. Fontolizumab (Huzaf™), a humanized anti-IFN-gamma antibody, has clinical activity and excellent tolerability in moderate to severe Crohn’s disease [abstract]. Gut 2004; 53 Suppl. VI: A48

    Google Scholar 

  211. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–4

    Article  PubMed  CAS  Google Scholar 

  212. Ghosh S, Goldin E, Gordon FH, et al. Natalizumab for active Crohn’s disease. N Engl J Med 2003; 348: 24–32

    Article  PubMed  CAS  Google Scholar 

  213. Gordon FH, Lai CW, Hamilton MI, et al. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology 2001; 121: 268–74

    Article  PubMed  CAS  Google Scholar 

  214. Rutgeerts P, Colombel JF, Enns R, et al. Subanalysis from a phase 3 study on the Evaluation of Natalizumab in Active Crohn’s disease Therapy-1 (ENACT-1) [abstract]. Gut 2003; 52 Suppl. VI: A239

    Google Scholar 

  215. Elan and Biogen Idec announce ANTEGREN-natalizumab-phase III maintenance trial in Crohn’s disease met its primary endpoint. Elan and Biogen Idec: Internet press release, 2004 [online]. Available from URL: http://www.elan.com [Accessed 2004 Dec 16]

  216. Rutgeerts P, Enns R, Colombel JF, et al. 6-months steroid-sparing results of natalizumab in a controlled study of patients with Crohn’s disease [abstract]. Gut 2004; 53 Suppl. VI: A48

    Google Scholar 

  217. Gordon FH, Hamilton MI, Donoghue S, et al. A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther 2002; 16: 699–705

    Article  PubMed  CAS  Google Scholar 

  218. Feagan BG, Greenberg G, Wild G, et al. Efficacy and safety of humanized alpha4 beta7 antibody in active Crohn’s disease [abstract]. Gastroenterology 2003; 124: A25

    Article  Google Scholar 

  219. Feagan BC, McDonald J, Greenberg G, et al. An ascending dose trial of a humanized A4B7 antibody in ulcerative colitis (UC) [abstract]. Gastroenterology 2001; 118: A874

    Article  Google Scholar 

  220. Bennet CF, Condon TP, Grimm S, et al. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J Immunol 1994; 152: 3530–40

    Google Scholar 

  221. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 1998; 114: 113–42

    Article  Google Scholar 

  222. Schreiber S, Nikolaus S, Malchow H, et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology 2001; 120: 1339–46

    Article  PubMed  CAS  Google Scholar 

  223. Yacyshyn BR, Chey WY, Goff J, et al. Double-blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut 2002; 51: 30–6

    Article  PubMed  CAS  Google Scholar 

  224. Beck PL, Podolsky DK. Growth factors in inflammatory bowel disease. Inflamm Bowel Dis 1999; 5: 44–60

    Article  PubMed  CAS  Google Scholar 

  225. Slonim AE, Bulone L, Damore MB, et al. A preliminary study of growth hormone therapy for Crohn’s disease. N Engl J Med 2000; 342: 1664–6

    Article  Google Scholar 

  226. Byrne F, Farrell C, Aranda R, et al. Recombinant human keratinocyte growth factor (rHuKGF) ameliorates disease symptoms in both the DSS and CD45RB Hi cell transfer murine models of inflammatory bowel disease (IBD) [abstract]. Gastroenterology 2001; 120 Suppl. 1: A689

    Google Scholar 

  227. Micedli R, Hubert M, Santiago G, et al. Efficacy of keratinocyte growth factor-2 in dextran sulphate sodium-induced murine colitis. J Pharmacol Exp Ther 1999; 290: 464–71

    Google Scholar 

  228. Han DS, Li F, Connolly K, et al. Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1011–22

    PubMed  CAS  Google Scholar 

  229. Sandborn WJ, Sands BE, Wolf DC, et al. Repivermin (keratinocyte growth factor-2) for the treatment of active ulcerative colitis: a randomized, double-blind, placebo-controlled, doseescalation trial. Aliment Pharmacol Ther 2003; 17: 1355–64

    Article  PubMed  CAS  Google Scholar 

  230. Sinha A, Nightgale J, West KP, et al. Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. N Engl J Med 2003; 349: 350–7

    Article  PubMed  CAS  Google Scholar 

  231. Korzenik JR, Dieckgraefe BK. Is Crohn’s disease an immunodeficiency? A hypothesis suggesting possible early events in the pathogenesis of Crohn’s disease. Dig Dis Sci 2000; 45: 1121–9

    Article  PubMed  CAS  Google Scholar 

  232. Dieckgraefe BK, Korzenik JR, Husain A, et al. Association of glycogen storage disease 1b and Crohn’s disease: results of a North American survey. Eur J Pediatr 2002; 161 Suppl. 1: S88–92

    Article  PubMed  Google Scholar 

  233. Dieckgraefe BK, Korzenik JR. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor. Lancet 2002; 360: 1478–80

    Article  PubMed  Google Scholar 

  234. Korzenic JR, Dieckgraefe BK. Immunostimulation in Crohn’s disease: results of a pilot study of G-CSF (R-Methug-CSF) in mucosal and fistulizing Crohn’s disease [abstract]. Gastroenterology 2000; 118: A874

    Article  Google Scholar 

  235. Korzenik J, Dieckgraefe B, Valentine J, et al. Sargramostim for active Crohn’s disease. N Engl J Med 2005; 352: 2193–201

    Article  PubMed  CAS  Google Scholar 

  236. Sandborn WL, Hanauer SB. Infliximab in the treatment of Crohn’s disease: a user’s guide for clinicians. Am J Gastroenterol 2002; 97: 2962–72

    Article  PubMed  CAS  Google Scholar 

  237. Hommes D, Baet F, van Assche G, et al. A randomized controlled trial evaluating the ideal medical management for Crohn’s disease (CD): Top-Down versus Step-UP strategies [abstract]. Gastroenterology 2005; 128: A577

    Google Scholar 

Download references

Acknowledgements

The authors thank Mrs Mary Trotter for her assistance in editing this manuscript.

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Bianchi Porro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardizzone, S., Porro, G.B. Biologic Therapy for Inflammatory Bowel Disease. Drugs 65, 2253–2286 (2005). https://doi.org/10.2165/00003495-200565160-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565160-00002

Keywords

Navigation