Skip to main content
Log in

Opioid-Induced Bowel Dysfunction

Pathophysiology and Potential New Therapies

Drugs Aims and scope Submit manuscript

Abstract

Opioid treatment for postoperative or chronic pain is frequently associated with adverse effects, the most common being dose-limiting and debilitating bowel dysfunction. Postoperative ileus, although attributable to surgical procedures, is often exacerbated by opioid use during and following surgery. Postoperative ileus is marked by increased inhibitory neural input, heightened inflammatory responses, decreased propulsive movements and increased fluid absorption in the gastrointestinal tract. The use of opioids for chronic pain is characterised by a constellation of symptoms including hard dry stools, straining, incomplete evacuation, bloating, abdominal distension and increased gastroesophageal reflux.

The current management of opioid-induced bowel dysfunction among patients receiving opioid analgesics consists primarily of nonspecific ameliorative measures. Intensive investigations into the mode of action of opioids have characterised three opioid receptor classes — μ, δ and κ — that mediate the myriad of peripheral and central actions of opioids. Activation of μ-opioid receptors in the gastrointestinal tract is responsible for inhibition of gut motility, whereas receptors in the central nervous system mediate the analgesic actions of opioids. Blocking peripheral opioid receptors in the gut is therefore a logical therapeutic target for managing opioid-induced bowel dysfunction.

Available opioid antagonists such as naloxone are of limited use because they are readily absorbed, cross the blood-brain barrier, and act at central opioid receptors to reverse analgesia and elicit opioid withdrawal. Methylnaltrexone and alvimopan are recently developed opioid antagonists with activity that is restricted to peripheral receptors. Both have recently shown the ability to reverse opioid-induced bowel dysfunction without reversing analgesia or precipitating central nervous system withdrawal signs in non-surgical patients receiving opioids for chronic pain. In addition, recent clinical studies with alvimopan suggest that it may normalise bowel function without blocking opioid analgesia in abdominal laparotomy patients with opioid-related postoperative ileus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Fig. 4
Fig. 5
Table III

References

  1. Friedman JD, Dello Bueno FA. Opioid antagonists in the treatment of opioid-induced constipation and pruritus. Ann Pharmacother 2001; 35: 85–91

    Article  PubMed  CAS  Google Scholar 

  2. Livingston EH, Passaro EP. Postoperative ileus. Dig Dis Sci 1990; 35: 121–32

    Article  PubMed  CAS  Google Scholar 

  3. Ogilvy AJ, Smith G. The gastrointestinal tract after anaesthesia. Eur J Anaesthesiol 1995; 12: 35–42

    Google Scholar 

  4. Resnick J, Greenwald DA, Brandt LJ. Delayed gastric emptying and postoperative ileus after non-gastric abdominal surgery: part I. Am J Gastroenterol 1997; 92: 751–62

    PubMed  CAS  Google Scholar 

  5. Bungard TJ, Kale-Pradhan PB. Prokinetic agents for the treatment of postoperative ileus in adults: a review of the literature. Pharmacotherapy 1999; 19: 416–23

    Article  PubMed  CAS  Google Scholar 

  6. Resnick J, Greenwald DA, Brandt LJ. Delayed gastric emptying and postoperative ileus after non-gastric abdominal surgery: part II. Am J Gastroenterol 1997; 92: 934–40

    PubMed  CAS  Google Scholar 

  7. Ferraz AAB, Cowles VE, Condon RE, et al. Nonopioid analgesics shorten the duration of postoperative ileus. Am Surg 1995; 12: 1079–83

    Google Scholar 

  8. Pappagallo M. Incidence, prevalence, and management of opioid bowel dysfunction. Am J Surg 2001; 182 (5A Suppl.): 11S–8S

    Article  PubMed  CAS  Google Scholar 

  9. Fallon MT, Hanks GW. Morphine, constipation, and performance status in advanced cancer patients. Palliat Med 1999; 13: 159–60

    Article  PubMed  CAS  Google Scholar 

  10. Klepstad P, Borchgrevink PC, Kaasa S. Effects on cancer patients’ health-related quality of life after the start of morphine therapy. J Pain Symptom Manage 2000; 20: 19–26

    Article  PubMed  CAS  Google Scholar 

  11. Vanegas G, Ripamonti C, Sbanotto A, et al. Side effects of morphine administration in cancer patients. Cancer Nurs 1998; 21: 289–97

    Article  PubMed  CAS  Google Scholar 

  12. Vainio A, Auvinen A. Prevalence of symptoms among patients with advanced cancer: an international collaborative study: Symptom Prevalence Group. J Pain Symptom Manage 1996; 12: 3–10

    Article  PubMed  CAS  Google Scholar 

  13. World Health Organization. Cancer pain relief. Geneva: WHO Office of Publications, 1986

    Google Scholar 

  14. Meuser T, Pietruck C, Radbruch L, et al. Symptoms during cancer pain treatment following WHO guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain 2001; 93: 247–57

    Article  PubMed  CAS  Google Scholar 

  15. Schug SA, Zech D, Dorr U. Cancer pain management according to WHO analgesic guidelines. J Pain Symptom Manage 1990: 5: 27–32

    Article  PubMed  CAS  Google Scholar 

  16. Grond S, Zech D, Diefenbach C, et al. Prevalence and pattern of symptoms in patients with cancer pain: a prospective evaluation of 1635 cancer patients referred to a pain clinic. J Pain Symptom Manage 1994; 9: 372–82

    Article  PubMed  CAS  Google Scholar 

  17. Mancini I, Bruera E. Constipation in advanced cancer patients. Support Care Cancer 1998; 6: 356–64

    Article  PubMed  CAS  Google Scholar 

  18. General principles of gastrointestinal function: motility, nervous control, and blood circulation. In:Guyton AC, Hall JE. Textbook of medical physiology. 10th ed. Philadelphia (PA): WB Saunders, 2000: 793–801

  19. Zenilman ME. Origin and control of gastrointestinal motility. Surg Clin North Am 1993; 73: 1081–9

    PubMed  CAS  Google Scholar 

  20. Sarna SK. Colonic motor activity. Surg Clin North Am 1993; 73: 1201–19

    PubMed  CAS  Google Scholar 

  21. Pasternak GW. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 1993; 16: 1–18

    Article  PubMed  CAS  Google Scholar 

  22. Kromer W. Endogenous opioids, the enteric nervous system, and gut motility. Dig Dis 1990; 8: 361–73

    Article  PubMed  CAS  Google Scholar 

  23. Austrup ML, Korean G. Analgesic agents for the postoperative period: opioids. Surg Clin North Am 1999; 79: 253–73

    Article  PubMed  CAS  Google Scholar 

  24. Mizoguchi H, Tseng LF, Suzuki T, et al. Differential mechanism of G-protein activation induced by endogenous muopioid peptides, endomorphin and beta-endorphin. Jpn J Pharmacol 2002; 89: 229–34

    Article  PubMed  CAS  Google Scholar 

  25. Zuckerman LA, Ferrante FM. Nonopioid and opioid analgesics. In: Ashburn MA, Rice LJ, editors. The management of pain. New York: Churchill Livingston, 1998: 111–40

    Google Scholar 

  26. Tseng LF. Evidence for epsilon-opioid receptor-mediated beta-endorphin-induced analgesia. Trends Pharmacol Sci 2001; 22: 623–30

    Article  PubMed  CAS  Google Scholar 

  27. Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 1994; 271: 1583–90

    PubMed  CAS  Google Scholar 

  28. Couture S, Debonnel G. Some of the effects of the selective sigma ligand (+)pentazocine are mediated via a naloxonesensitive receptor. Synapse 2001; 39: 323–31

    Article  PubMed  CAS  Google Scholar 

  29. Roman F, Pascaud X, Chomette G, et al. Autoradiographic localization of sigma opioid receptors in the gastrointestinal tract of the guinea pig. Gastroenterology 1989; 97: 76–82

    PubMed  CAS  Google Scholar 

  30. Kieffer BL. Opioids: first lessons from knockout mice. Trends Pharmacol Sci 1999; 20: 19–26

    Article  PubMed  CAS  Google Scholar 

  31. Greenwald MK, Stitzer ML, Haberny KA. Human pharmacology of the opioid neuropeptide dynorphin A (1–13). J Pharmacol Exp Ther 1997; 281: 1154–63

    PubMed  CAS  Google Scholar 

  32. Calo G, Rizzi A, Bigoni R, et al. Pharmacological profile of nociceptin/orphanin FQ receptors. Clin Exp Pharmacol Physiol 2002; 29: 223–8

    Article  PubMed  CAS  Google Scholar 

  33. Krowicki ZK, Kapusta DR, Hornby PJ. Orphanin FQ/nociceptin and [Phe(1)Psi(CH(2)-NH)Gly(2)] nociceptin (1–13)-NH(2) stimulate gastric motor function in anaesthetized rats. Br J Pharmacol 2000; 130: 1639–45

    Article  PubMed  CAS  Google Scholar 

  34. Bagnol D, Mansour A, Akil H, et al. Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience 1997; 81: 579–91

    Article  PubMed  CAS  Google Scholar 

  35. Zadina JE, Martin-Schild S, Gerall AA, et al. Endomorphins: novel endogenous mu-opiate receptor agonists in regions of high mu-opiate receptor density. Ann N Y Acad Sci 1999; 897: 136–44

    Article  PubMed  CAS  Google Scholar 

  36. Bianchi G, Ferretti P, Recchia M, et al. Morphine tissue levels and reduction of gastrointestinal transit in rats: correlation supports primary action site in the gut. Gastroenterology 1983; 85(4): 852–8

    PubMed  CAS  Google Scholar 

  37. De Luca A, Coupar IM. Insights into opioid actions in the intestinal tract. Pharmacol Ther 1996; 69: 103–15

    Article  PubMed  Google Scholar 

  38. Culpepper-Morgan J, Kreek MJ, Holt PR, et al. Oral administered kappa as mu opioid agonists delay gastrointestinal transit time in the guinea pig. Life Sci 1988; 42: 2073–7

    Article  PubMed  CAS  Google Scholar 

  39. Giaroni C, Somaini L, Marino F, et al. Modulation of enteric cholinergic neurons by hetero-and autoreceptors: cooperation among inhibitory inputs. Life Sci 1999; 65: 813–21

    Article  PubMed  CAS  Google Scholar 

  40. Kromer W. Reflex peristalsis in the guinea pig isolated ileum is endogenously controlled by kappa opioid receptors. Naunyn Schmiedebergs Arch Pharmacol 1990; 341: 450–4

    PubMed  CAS  Google Scholar 

  41. Allescher HD, Storr M, Brechmann C, et al. Modulatory effect of endogenous and exogenous opioids on the excitatory reflex pathway of the rat ileum. Neuropeptides 2000; 34: 62–8

    Article  PubMed  CAS  Google Scholar 

  42. Kaufman PN, Krevsky B, Malmud LS, et al. Role of opioid receptors in the regulation of colonic transit. Gastroenterology 1988; 94: 1351–6

    PubMed  CAS  Google Scholar 

  43. Ferraz AAB, Cowles VE, Condon RE, et al. Opioid and nonopioid analgesic drug effects on colon contractions in monkeys. Dig Dis Sci 1995; 40: 1417–9

    Article  PubMed  CAS  Google Scholar 

  44. Frantzides CT, Cowles V, Salaymeh B, et al. Morphine effects on humane colonic myoelectric activity in the postoperative period. Am J Surg 1992; 163: 144–9

    Article  PubMed  CAS  Google Scholar 

  45. Lewis TD. Morphine and gastroduodenal motility. Dig Dis Sci 1999; 44: 2178–86

    Article  PubMed  CAS  Google Scholar 

  46. Camilleri M, Malagelada JR, Stanghellini V, et al. Dose-related effects of synthetic human beta-endorphin and naloxone on fed gastrointestinal motility. Am J Physiol 1986; 251(1 Part 1): G147–54

    PubMed  CAS  Google Scholar 

  47. Canty SL. Constipation as a side effect of opioids. Oncol Nurs Forum 1994; 21: 739–45

    PubMed  CAS  Google Scholar 

  48. Kehlet H. Postoperative ileus. Gut 2000; 47: 85–6

    Article  Google Scholar 

  49. Prasad M, Matthews JB. Deflating postoperative ileus. Gastroenterology 1999; 117: 489–92

    Article  PubMed  CAS  Google Scholar 

  50. Holte K, Kehlet H. Postoperative ileus: a preventable event. Br J Surg 2000; 87: 1480–93

    Article  PubMed  CAS  Google Scholar 

  51. Smith J, Kelly KA, Weinshilboum RM. Pathophysiology of postoperative ileus. Arch Surg 1977; 112: 203–9

    Article  PubMed  CAS  Google Scholar 

  52. Dubois A, Weise VK, Kopin IJ. Postoperative ileus in the rat. Ann Surg 1973; 178: 781–6

    Article  PubMed  CAS  Google Scholar 

  53. Kalff JC, Schraut WH, Simmons RL, et al. Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg 1998; 228: 52–63

    Article  Google Scholar 

  54. Kalff JC, Bucholz BM, Eskandari MK, et al. Biphasic response to gut manipulation and temporal correlation of cellular infiltrates and muscle dysfunction in rats. Surgery 1999; 126: 498–509

    Article  PubMed  CAS  Google Scholar 

  55. Cali RL, Meade PG, Swanson MS, et al. Effect of morphine and incision length on bowel function after colectomy. Dis Colon Rectum 2000; 43: 163–8

    Article  PubMed  CAS  Google Scholar 

  56. Wattwil M. Postoperative pain relief and gastrointestinal motility. Acta Chir Scand Suppl 1988; 550: 140–5

    Google Scholar 

  57. Brix-Christensen V, Tennesen E, Sanches RG, et al. Endogenous morphine levels increase following cardiac surgery as part of the antiinflammatory response? Int J Cardiol 1997; 62: 191–7

    Article  PubMed  CAS  Google Scholar 

  58. Brix-Christensen V, Goumon Y, Tennesn E, et al. Endogenous morphine is produced in response to cardiopulmonary bypass in neonatal pigs. Acta Anaesthesiol Scand 2000; 45: 1204–8

    Article  Google Scholar 

  59. Yoshida S, Ohta J, Yamasaki K, et al. Effect of surgical stress on endogenous morphine and cytokine levels in the plasma alter laparoscopic or open cholecystectomy. Surg Endosc 2000; 14: 137–40

    PubMed  CAS  Google Scholar 

  60. Schug SA, Zech D, Grond S, et al. A long-term survey of morphine in cancer pain patients. J Pain Symptom Manage 1992; 7: 259–66

    Article  PubMed  CAS  Google Scholar 

  61. Walsh TD. Prevention of opioid side effects. J Pain Symptom Mange 1990; 5: 362–7

    Article  CAS  Google Scholar 

  62. McMillan SC. Assessing and managing narcotic-induced constipation in adults with cancer. Cancer Control 1999; 6: 198–204

    PubMed  Google Scholar 

  63. Glare P, Lickiss JN. Unrecognized constipation in patients with advanced cancer: a recipe for therapeutic disaster. J Pain Symptom Manage 1992; 7: 369–71

    Article  PubMed  CAS  Google Scholar 

  64. Klepstad P, Kaasa S, Skauge M, et al. Pain intensity and side effects during titration of morphine to cancer patients using a fixed schedule dose escalation. Acta Anaesthesiol Scand 2000; 44: 656–64

    Article  PubMed  CAS  Google Scholar 

  65. Palmer CS, Ingham M, Schmier J, et al. Utility assessments of opioid treatment for patients with chronic non-cancer pain [abstract 790]. Presented at the 20th Annual Scientific meeting of the American Pain Society; 2001 Apr 19–22; Phoenix (AZ)

  66. Sykes NP. The relationship between opioid use and laxative use in terminally ill cancer patients. Palliat Med 1998; 12: 375–82

    Article  PubMed  CAS  Google Scholar 

  67. Yuan CS, Foss JF, O’Connor M, et al. Gut motility and transit changes in patients receiving long-term methadone maintenance. J Clin Pharmacol 1998; 38: 931–5

    PubMed  CAS  Google Scholar 

  68. Moulin DE, Iezzi A, Amireh R, et al. Randomised trial of oral morphine for chronic non-cancer pain. Lancet 1996; 347: 143–7

    Article  PubMed  CAS  Google Scholar 

  69. Stewart JJ, Weisbrodt NW, Burks TF. Central and peripheral actions of morphine on intestinal transit. J Pharmacol Exp Ther 1978; 205: 547–55

    PubMed  CAS  Google Scholar 

  70. Manara L, Bianchetti A. The central and peripheral influences of opioids on gastrointestinal propulsion. Annu Rev Pharmacol Toxicol 1985; 25: 249–73

    Article  PubMed  CAS  Google Scholar 

  71. Russell J, Bass P, Goldberg LI, et al. Antagonism of gut but not central effects of morphine with quaternary narcotic antagonists. Eur J Pharmacol 1982; 78: 255–61

    Article  PubMed  CAS  Google Scholar 

  72. Shook JE, Pelton JT, Hruby VJ, et al. Peptide opioid antagonist separates peripheral and central opioid antitransit effects. J Pharmacol Exp Ther 1987; 243: 492–500

    PubMed  CAS  Google Scholar 

  73. Manara L, Bianchi G, Ferretti P, et al. Inhibition of gastrointestinal transit by morphine in rats results primarily from direct drug action on gut opioid sites. J Pharmacol Exp Ther 1986; 237: 945–9

    PubMed  CAS  Google Scholar 

  74. Cheatham ML, Chapman WC, Sawyers JL. A meta-analysis of selective versus routine nasogastric decompression after elective surgery. Ann Surg 1995; 221: 469–76

    Article  PubMed  CAS  Google Scholar 

  75. Sagar PM, Kruegener G, MacFie J. Nasogastric intubation and elective abdominal surgery. Br J Surg 1992; 79: 1127–31

    Article  PubMed  CAS  Google Scholar 

  76. Phillips EH, Franklin M, Carroll BJ. Laparoscopic colectomy. Ann Surg 1992; 216: 703–7

    Article  PubMed  CAS  Google Scholar 

  77. Milsom JW, Bohm B, Hammerhofer KA, et al. A prospective randomised trial comparing laparoscopic versus conventional techniques in colorectal cancer surgery: a preliminary report. J Am Coll Surg 1998; 187: 45–54

    Article  Google Scholar 

  78. Bonacini M, Quiason S, Reynolds M, et al. Effect of intravenous erythromycin on postoperative ileus. Am J Gastroenterol 1993; 88: 208–11

    PubMed  CAS  Google Scholar 

  79. Jorgensen H, Wetterslev J, Moiniche S, et al. Epidural local anesthetics versus opioid-based analgesic regimens on postoperative gastrointestinal paralysis, PONV and pain after abdominal surgery. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration: issue 1. Oxford: Update Software, 2002

  80. Steinbrook RA. Epidural anesthesia and gastrointestinal motility. Anesth Analg 1998; 86: 837–44

    PubMed  CAS  Google Scholar 

  81. de Leon-Casasola OA, Karablella D, Lema MJ. Bowel function recovery after radical hysterectomies: thoracic epidural bupivacaine-morphine versus intravenous patient-controlled analgesia with morphine: a pilot study. J Clin Anesth 1996; 8: 87–92

    Article  PubMed  Google Scholar 

  82. Rawal N. Epidural and spinal agents for postoperative analgesia. Surg Clin North Am 1999; 79: 313–44

    Article  PubMed  CAS  Google Scholar 

  83. Wong HY, Carpenter RL, Kopacz DJ, et al. A randomized, double-blind evaluation of ketorolac tromethamine for postoperative analgesia in ambulatory surgery patients. Anesthesiology 1993; 78: 6–14

    Article  PubMed  CAS  Google Scholar 

  84. Basse L, Madsen JL, Kehlet H. Normal gastrointestinal transit after colonic resection using epidural analgesia, enforced oral nutrition and laxative. Br J Surg 2001; 88: 1498–500

    Article  PubMed  CAS  Google Scholar 

  85. Bradshaw BGG, Liu SS, Thirlby RC. Standardized perioperative care protocols and reduced length of stay after colon surgery. J Am Coll Surg 1998; 186: 501–6

    Article  PubMed  CAS  Google Scholar 

  86. Moiniche S, Bulow S, Hesselfeldt P, et al. Convalescence and hospital stay after colonic surgery with balanced analgesia, early oral feeding, and enforced mobilization. Eur J Surg 1995;161: 283–8

    PubMed  CAS  Google Scholar 

  87. O’Mahony S, Coyle N, Payne R. Current management of opioid-related side effects. Oncology 2001; 15: 61–73

    PubMed  Google Scholar 

  88. Cameron JC. Constipation related to narcotic therapy. Cancer Nurs 1992; 15: 372–7

    Article  PubMed  CAS  Google Scholar 

  89. Herndon CM, Jackson KC, Hallin PA. Management of opioid-induced gastrointestinal effects in patients receiving palliative care. Pharmacotherapy 2002; 22: 240–50

    Article  PubMed  CAS  Google Scholar 

  90. Donner B, Zenz M, Strumpf M, et al. Long-term treatment of cancer pain with transdermal fentanyl. J Pain Symptom Manage 1998; 15: 168–75

    Article  PubMed  CAS  Google Scholar 

  91. Ahmedzai S, Brooks D. Transdermal fentanyl versus sustained-release oral morphine in cancer pain: preference, efficacy, and quality of life. J Pain Symptom Manage 1997; 13: 254–61

    Article  PubMed  CAS  Google Scholar 

  92. Allan L, Hays H, Jensen NH, et al. Randomized crossover trial of transdermal fentanyl and sustained release oral morphine for treating chronic non-cancer pain. BMJ 2001; 322: 1–7

    Article  Google Scholar 

  93. Holte K, Kehlet H. Review of postoperative ileus. Am J Surg 2001; 182 (5A Suppl.): 3S–10S

    Article  PubMed  Google Scholar 

  94. Handal KA, Schauben JL, Salamone FR. Naloxone. Ann Emerg Med 1983; 12: 438–45

    Article  PubMed  CAS  Google Scholar 

  95. Culpepper-Morgan JA, Inturrisssi CE, Portenoy RK, et al. Treatment of opioid-induced constipation with oral naloxone: a pilot study. Clin Pharmacol Ther 1992; 52: 90–5

    Article  PubMed  CAS  Google Scholar 

  96. Sykes NP. An investigation of the ability of oral naloxone to correct opioid-related constipation in patients with advanced cancer. Palliat Med 1996; 10: 135–44

    Article  PubMed  CAS  Google Scholar 

  97. Meissner W, Schmidt U, Hartmann M, et al. Oral naloxone reverses opioid-associated constipation. Pain 2000; 84: 105–9

    Article  PubMed  CAS  Google Scholar 

  98. Liu M, Wittbrodt E. Low-dose oral naloxone reverses opioid-induced constipation and analgesia. J Pain Symptom Manage 2002; 23: 48–53

    Article  PubMed  Google Scholar 

  99. Cheskin LJ, Chami TN, Johnson RE, et al. Assessment of nalmefene glucuronide as a selective gut opioid antagonist.Drug Alcohol Depend 1995; 39: 151–4

    Article  PubMed  CAS  Google Scholar 

  100. Brown DR, Goldberg LI. The use of quaternary narcotic antagonists in opiate research. Neuropharmacology 1985; 24: 181–91

    Article  PubMed  CAS  Google Scholar 

  101. Bianchi G, Fiocchi R, Tavani A, et al. Quaternary narcotic antagonists’ relative ability to prevent antinociception and gastrointestinal transit inhibition in morphine-treated rats as an index of peripheral selectivity. Life Sci 1982; 30: 1875–83

    Article  PubMed  CAS  Google Scholar 

  102. Foss J. A review of the potential role of methyl naltrexone in opioid bowel dysfunction. Am J Surg 2001; 182 (5A Suppl.): 19S–26S

    Article  PubMed  CAS  Google Scholar 

  103. Kotake AN, Kuwahara SK, Burton E, et al. Variations in demethylation of N-methylnaltrexone in mice, rats, dogs, and humans. Xenobiotica 1989; 19: 1247–54

    Article  PubMed  CAS  Google Scholar 

  104. Valentino RJ, Katz JL, Medzihradsky E, et al. Receptor binding, antagonist, and withdrawal precipitating properties of opiate antagonists. Life Sci 1983; 32: 2887–96

    Article  PubMed  CAS  Google Scholar 

  105. Gmerek DE, Cowan A, Woods JH. Independent central and peripheral mediation of morphine-induced inhibition of gastrointestinal transit in rats. J Pharmacol Exp Ther 1986; 236: 8–13

    PubMed  CAS  Google Scholar 

  106. Yuan CS, Foss JF, Moss J. Effects of methylnaltrexone on morphine-induced inhibition of contraction in isolated guinea pig ileum and human intestine. Eur J Pharmacol 1995; 276: 107–11

    Article  PubMed  CAS  Google Scholar 

  107. Yuan CS, Foss JF, O’Connor M, et al. Methylnaltrexone prevents morphine-induced delay in oral-cecal transit time without affecting analgesia: a double-blind randomized placebo-controlled trial. Clin Pharmacol Ther 1996; 59: 469–75

    Article  PubMed  CAS  Google Scholar 

  108. Yuan CS, Foss JF, Osinski J, et al. The safety and efficacy of oral methylnaltrexone in preventing morphine-induced delay in oral-cecal transit time. Clin Pharmacol Ther 1997; 61: 467–75

    Article  PubMed  CAS  Google Scholar 

  109. Yuan CS, Foss JF, O’Connor M, et al. Effects of enteric-coated methylnaltrexone in preventing opioid-induced delay in oral-cecal transit time. Clin Pharmacol Ther 2000; 67: 398–404

    Article  PubMed  CAS  Google Scholar 

  110. Yuan CS, Foss JF, O’Connor M, et al. Methylnaltrexone for reversal of constipation due to chronic methadone use. JAMA 2000; 283: 367–72

    Article  PubMed  CAS  Google Scholar 

  111. Yuan CS, Foss JF. Oral methylnaltrexone for opioid-induced constipation [letter]. JAMA 2000; 284: 1383–4

    Article  PubMed  CAS  Google Scholar 

  112. Zimmerman DM, Gidda JS, Cantrell BE, et al. LY246736 dihydrate: μ opioid receptor antagonist. Drugs Future 1994; 19: 1078–83

    Google Scholar 

  113. Zimmerman DM, Gidda JS, Canterell BE, et al. Discovery of a potent, peripherally selective trans-3,4-dimethyl-4-(3-hydro xyphenyl) piperidine opioid antagonist for the treatment of gastrointestinal motility disorders. J Med Chem 1994; 37: 2262–5

    Article  PubMed  CAS  Google Scholar 

  114. Schmidt WK. Alvimopan* (ADL 8-2698) is a novel peripheral opioid antagonist. Am J Surg 2001; 182 (5A Suppl.): 27S–38S

    Article  PubMed  CAS  Google Scholar 

  115. Liu SS, Hodgson PS, Carpenter RL, et al. ADL 8-2698, a trans-3,4-dimethyl-4-(3-hydroxyphenyl) piperidine, prevents gastrointestinal effects of intravenous morphine without affecting analgesia. Pharmacol Ther 2000; 68: 66–71

    Google Scholar 

  116. Taguchi A, Sharma N, Saleem RM, et al. Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med 2001; 345: 935–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by Adolor, Inc., NIH Grant GM 58273, and the Commonwealth of Kentucky Research Challenge Trust Fund. Neither author has a personal financial interest related to this review or any products mentioned herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel I. Sessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz, A., Sessler, D.I. Opioid-Induced Bowel Dysfunction. Drugs 63, 649–671 (2003). https://doi.org/10.2165/00003495-200363070-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363070-00003

Keywords

Navigation