Skip to main content
Log in

Tumour Necrosis Factor in Chronic Heart Failure

A Peripheral View on Pathogenesis, Clinical Manifestations and Therapeutic Implications

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The development of chronic heart failure (CHF) includes phenotypic changes in a host of homeostatic systems so that, as the disease advances, CHF may be seen as a multi-system disorder with its origins in the heart but embracing many extra-cardiac manifestations. Immunological abnormalities are recognised in this context, in particular, changes in the expression of mediators of the innate immune response. Higher levels of the pro-inflammatory cytokine tumor necrosis factor (TNF) are found in the circulation and in the myocardium of patients with CHF than in controls, and TNF has been implicated in a number of pathophysiological processes that are thought important to the progression of CHF. Therapies directed against this cytokine therefore represent a novel approach to heart failure management.

Anti-TNF strategies in CHF may target the mechanisms of immune activation, the intracellular pathways regulating TNF production, or the fate of TNF once it has been released into the circulation. Circulating endotoxin may be an important stimulus to TNF production by circulating monocytes, tissue macrophages and cardiac myocytes in CHF and efforts to limit this phenomenon are of interest. Several established pharmacological therapies for patients with CHF, including angiotensin converting enyzme inhibitors, β-blockers, and phosphodiesterase inhibitors may modify cellular TNF production by their action on intracellular mechanisms, whereas TNF receptor fusion proteins have been developed that target circulating TNF itself. Patients with New York Heart Association class IV symptoms, those with cardiac cachexia and those with oedematous decompensation of their disease have the highest serum TNF levels and are most likely to benefit most from such a therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hunink MG, Goldman L, Tosteson AN, et al. The recent decline in mortality from coronary heart disease, 1980–1990: the effect of secular trends in risk factors and treatment. JAMA 1997; 277: 535–42

    Article  PubMed  CAS  Google Scholar 

  2. McGovern PG, Pankow JS, Shahar E, et al. Recent trends in acute coronary heart disease: mortality, morbidity, medical care, and risk factors. The Minnesota Heart Survey Investigators. N Engl J Med 1996; 334: 884–90

    Article  PubMed  CAS  Google Scholar 

  3. Rosamond WD, Chambless LE, Folsom AR, et al. Trends in the incidence of myocardial infarction and in mortality due to coronary heart disease, 1987 to 1994. N Engl J Med 1998; 339: 861–7

    Article  PubMed  CAS  Google Scholar 

  4. Cowie MR, Wood DA, Coats AJ, et al. Incidence and aetiology of heart failure; a population-based study. Eur Heart J 1999; 20: 421–8

    Article  PubMed  CAS  Google Scholar 

  5. Ho KK, Anderson KM, Kannel WB, et al. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993; 88: 107–15

    Article  PubMed  CAS  Google Scholar 

  6. McMurray JJ, Petrie MC, Murdoch DR, et al. Clinical epidemiology of heart failure: public and private health burden. Eur Heart J 1998; 19: P9–16

    Article  PubMed  Google Scholar 

  7. Carswell EA, Old LJ, Kassel RL, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 1975; 72: 3666–70

    Article  PubMed  CAS  Google Scholar 

  8. Helson L, Green S, Carswell E, et al. Effect of tumor necrosis factor on cultured human melanoma cells. Nature 1975; 258: 731–2

    Article  PubMed  CAS  Google Scholar 

  9. Beutler B, Mahoney J, Le Trang N, et al. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 1985; 161: 984

    Article  PubMed  CAS  Google Scholar 

  10. Beutler B, Greenwald D, Huhnes JD, et al. Identity of tumor necrosis factor and the macrophage-secreted factor cachectin. Nature 1985; 316: 552–4

    Article  PubMed  CAS  Google Scholar 

  11. Han J, Brown T, Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med 1990; 171: 465–75

    Article  PubMed  CAS  Google Scholar 

  12. Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 1998; 281: 1001–5

    Article  PubMed  CAS  Google Scholar 

  13. Lewis T, Gueydan C, Huez G, et al. Mapping of a minimal AU-rich sequence required for lipopolysaccharide-induced binding of a 55-kDa protein on tumor necrosis factor-mRNA. J Biol Chem 1998; 273: 13781–6

    Article  PubMed  CAS  Google Scholar 

  14. Gearing AJ, Beckett P, Christodoulou M, et al. Processing of tumor necrosis factor-alpha precursor by metalloproteinases. Nature 1994; 370: 555–7

    Article  PubMed  CAS  Google Scholar 

  15. Black RA, Rauch CT, Kozlosky CJ, et al. A metalloproteinase disintegrin that releases tumor-necrosis factor-alpha from cells. Nature 1997; 385: 729–33

    Article  PubMed  CAS  Google Scholar 

  16. Dembic Z, Loetscher H, Gubler U, et al. Two human TNF receptors have similar extracellular, but distinct intracellular, domain sequences. Cytokine 1990; 2: 231–7

    Article  PubMed  CAS  Google Scholar 

  17. Torre-Amione G, Kapadia S, Lee J, et al. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 1995; 92: 1487–93

    Article  PubMed  CAS  Google Scholar 

  18. Mohler KM, Torrance DS, Smith CA, et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 1993; 151: 1548–61

    PubMed  CAS  Google Scholar 

  19. Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995; 92: 1479–86

    Article  PubMed  CAS  Google Scholar 

  20. Packer M. Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation 1995; 92: 1379–82

    Article  PubMed  CAS  Google Scholar 

  21. Dibbs Z, Thornby J, White BG, et al. Natural variability of circulating levels of cytokines and cytokine receptors in patients with heart failure: implications for clinical trials. J Am Coll Cardiol 1999; 33: 1935–42

    Article  PubMed  CAS  Google Scholar 

  22. Steele IC, Nugent AM, Maguire S, et al. Cytokine profile in chronic cardiac failure. Eur J Clin Invest 1996; 26: 1018–22

    Article  PubMed  CAS  Google Scholar 

  23. Testa M, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996; 28: 964–71

    Article  PubMed  CAS  Google Scholar 

  24. Levine B, Kaiman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323: 236–41

    Article  PubMed  CAS  Google Scholar 

  25. McMurray J, Abdullah I, Dargie HJ, et al. Increased concentrations of tumour necrosis factor in ‘cachectic’ patients with severe chronic heart failure. Br Heart J 1991; 66: 356–8

    Article  PubMed  CAS  Google Scholar 

  26. Dutka DP, Elborn JS, Delamere F, et al. Tumor necrosis factor alpha in severe congestive cardiac failure. Br Heart J 1993; 70: 141–3

    Article  PubMed  CAS  Google Scholar 

  27. Anker SD, Chua TP, Ponikowski P, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 1997; 96: 526–34

    Article  PubMed  CAS  Google Scholar 

  28. MacGowan GA, Mann DL, Kormos RL, et al. Circulating inter-leukin-6 in severe heartfailure. Am J Cardiol 1997;79: 1128–31

    Article  PubMed  CAS  Google Scholar 

  29. Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996; 27: 1201–6

    Article  PubMed  CAS  Google Scholar 

  30. Munger MA, Johnson B, Amber IJ, et al. Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1996; 77: 723–7

    Article  PubMed  CAS  Google Scholar 

  31. Tsutamoto T, Hisanaga T, Wada A, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998; 31: 391–8

    Article  PubMed  CAS  Google Scholar 

  32. Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999; 353: 1838–42

    Article  PubMed  CAS  Google Scholar 

  33. Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997; 349: 1050–3

    Article  PubMed  CAS  Google Scholar 

  34. Anker SD, Ponikowski PP, Clark AL, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J 1999; 20: 683–93

    Article  PubMed  CAS  Google Scholar 

  35. Anker SD, Clark AL, Teixeira MM, et al. Loss of bone mineral in patients with cachexia due to chronic heart failure. Am J Cardiol 1999; 83: 612–5

    Article  PubMed  CAS  Google Scholar 

  36. Torre-Amione G, Kapadia S, Lee J, et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996; 93: 704–11

    Article  PubMed  CAS  Google Scholar 

  37. Nozaki N, Yamaguchi S, Shirakabe M, et al. Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn Circ J 1997; 61: 657–64

    Article  PubMed  CAS  Google Scholar 

  38. Rauchhaus M, Doehner W, Volk HD, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. In press

  39. Paolisso G, Valentini G, Giugliano D, et al. Evidence for peripheral impaired glucose handling in patients with connective tissue diseases. Metabolism 1991; 40: 902–7

    Article  PubMed  CAS  Google Scholar 

  40. Swan JW, Walton C, Godsland IF, et al. Insulin resistance in chronic heart failure. Eur Heart J 1994; 15: 1528–32

    PubMed  CAS  Google Scholar 

  41. Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol 1997; 30: 527–32

    Article  PubMed  CAS  Google Scholar 

  42. Paolisso G, Tagliamonte MR, Rizzo MR, et al. Prognostic importance of insulin-mediated glucose uptake in aged patients with congestive heart failure secondary to mitral and/or aortic valve disease. Am J Cardiol 1999; 83: 1338–44

    Article  PubMed  CAS  Google Scholar 

  43. Doehner W, Rauchhaus M, Godsland IF, et al. Insulin resistance in chronic heartfailure: TNF-alpha, norepinephrine, or leptin-related [abstract]? J Am Coll Cardiol 2000; 35: 179A

    Google Scholar 

  44. Anand IS, Ferrari R, Kalra GS, et al. Edema of cardiac origin: studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 1989; 80: 299–305

    Article  PubMed  CAS  Google Scholar 

  45. Anker SD, Clark AL, Kemp M, et al. Tumor necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J Am Coll Cardiol 1997; 30: 997–1001

    Article  PubMed  CAS  Google Scholar 

  46. Anker SD, Rauchhaus M. Insights into the pathogenesis of chronic heart failure: immune activation and cachexia. Curr Opin Cardiol 1999; 14: 211–16

    Article  PubMed  CAS  Google Scholar 

  47. Anker SD, Coats AJ. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 1999; 115: 836–47

    Article  PubMed  CAS  Google Scholar 

  48. Sharma R, Coats AJ, Anker SD. The role of inflammatory mediators in chronic heart failure: cytokines, nitric oxide, and endothelin-1. Int J Cardiol 2000; 72: 175–86

    Article  PubMed  CAS  Google Scholar 

  49. Anker SD, Swan JW, Volterrani M, et al. The influence of muscle mass, strength, fatigability and blood flow on exercise capacity in cachectic and non-cachectic patients with chronic heart failure. Eur Heart J 1997; 18: 259–69

    Article  PubMed  CAS  Google Scholar 

  50. Anker SD, Volterrani M, Egerer KR, et al. Tumor necrosis factor alpha as a predictor of impaired peak leg blood flow in patients with chronic heart failure. QJM 1998; 91: 199–203

    Article  PubMed  CAS  Google Scholar 

  51. Vanderheyden M, Kersschot E, Paulus WJ. Pro-inflammatory cytokines and endothelium-dependent vasodilation in the forearm: serial assessment in patients with congestive heart failure. Eur Heart J 1998; 19: 747–52

    Article  PubMed  CAS  Google Scholar 

  52. Yokoyama T, Vaca L, Rossen RD, et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993; 92: 2303–12

    Article  PubMed  CAS  Google Scholar 

  53. Oral H, Dorn 2nd GW, Mann DL. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem 1997; 272: 4836–42

    Article  PubMed  CAS  Google Scholar 

  54. Krown KA, Yasui K, Brooker MJ, et al. TNF alpha receptor expression in rat cardiac myocytes: TNF alpha inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Lett 1995; 376: 24–30

    Article  PubMed  CAS  Google Scholar 

  55. Dettbarn CA, Betto R, Salviati G, et al. Modulation of cardiac sarcoplasmic reticulum ryanodine receptor by sphingosine. J Mol Cell Cardiol 1994; 26: 229–42

    Article  PubMed  CAS  Google Scholar 

  56. Sabbadini RA, Betto R, Teresi A, et al. The effects of sphingosine on sarcoplasmic reticulum membrane calcium release. J Biol Chem 1992; 267: 15475–84

    PubMed  CAS  Google Scholar 

  57. Krown KA, Page MT, Nguyen C, et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes: involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996; 98: 2854–65

    Article  PubMed  CAS  Google Scholar 

  58. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335: 1182–9

    Article  PubMed  CAS  Google Scholar 

  59. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997; 336: 1131–41

    Article  PubMed  CAS  Google Scholar 

  60. Saraste A, Pulkki K, Kallajoki M, et al. Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 1999; 29: 380–6

    Article  PubMed  CAS  Google Scholar 

  61. Adams V, Jiang H, Yu J, et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol 1999; 33: 959–65

    Article  PubMed  CAS  Google Scholar 

  62. Wallach D, Varfolomeev EE, Malinin NL, et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17: 331–67

    Article  PubMed  CAS  Google Scholar 

  63. Brady AJ, Poole-Wilson PA, Harding SE, et al. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 1992; 263: H1963–6

    PubMed  CAS  Google Scholar 

  64. Brady AJ, Warren JB, Poole-Wilson PA, et al. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 1993; 265: H176–82

    PubMed  CAS  Google Scholar 

  65. Hare JM, Loh E, Creager MA, et al. Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Circulation 1995; 92: 2198–203

    Article  PubMed  CAS  Google Scholar 

  66. de Beider AJ, Radomski MW, Why HJ, et al. Nitric oxide synthase activities in human myocardium. Lancet 1993; 341: 84–5

    Article  Google Scholar 

  67. Haywood GA, Tsao PS, von der Leyen HE, et al. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996; 93: 1087–94

    Article  PubMed  CAS  Google Scholar 

  68. Vejlstrup NG, Bouloumie A, Boesgaard S, et al. Inducible nitric oxide synthase (iNOS) in the human heart: expression and localization in congestive heart failure. J Mol Cell Cardiol 1998; 30: 1215–23

    Article  PubMed  CAS  Google Scholar 

  69. Chow JC, Young DW, Golenbock DT, et al. Toll-like receptor 4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274: 10689–92

    Article  PubMed  CAS  Google Scholar 

  70. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 2000; 12: 20–6

    Article  PubMed  CAS  Google Scholar 

  71. Schumann RR, Leong SR, Flaggs GW, et al. Structure and function of lipopolysaccharide binding protein. Science 1990; 249: 1429–31

    Article  PubMed  CAS  Google Scholar 

  72. Wagner DR, Combes A, McTiernan C, et al. Adenosine inhibits lipopolysaccharide-induced cardiac expression of tumor necrosis factor-alpha. Circ Res 1998; 82: 47–56

    Article  PubMed  CAS  Google Scholar 

  73. Yokoyama T, Sekiguchi K, Tanaka T, et al. Angiotensin II and mechanical stretch induce production of tumor necrosis factor in cardiac fibroblasts. Am J Physiol 1999; 276: H1968–76

    PubMed  CAS  Google Scholar 

  74. Anker SD, Egerer KR, Volk HD, et al. Elevated soluble CD 14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 1997; 79: 1426–30

    Article  PubMed  CAS  Google Scholar 

  75. Frantz S, Kobzik L, Kim YD, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 1999; 104: 271–80

    Article  PubMed  CAS  Google Scholar 

  76. Habib FM, Springall DR, Davies GJ, et al. Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996; 347: 1151–5

    Article  PubMed  CAS  Google Scholar 

  77. Satoh M, Nakamura M, Tamura G, et al. Inducible nitric oxide synthase and tumor necrosis factor-alpha in myocardium in human dilated cardiomyopathy. J Am Coll Cardiol 1997; 29: 716–24

    Article  PubMed  CAS  Google Scholar 

  78. Doyama K, Fujiwara H, Fukumoto M, et al. Tumor necrosis factor is expressed in cardiac tissues of patients with heart failure. Int J Cardiol 1996; 54: 217–25

    Article  PubMed  CAS  Google Scholar 

  79. Kapadia SR, Oral H, Lee J, et al. Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circ Res 1997; 81: 187–95

    Article  PubMed  CAS  Google Scholar 

  80. Torre-Amione G, Stetson SJ, Youker KA, et al. Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation 1999; 100: 1189–93

    Article  PubMed  CAS  Google Scholar 

  81. Goldstein DJ, Moazami N, Seldomridge JA, et al. Circulatory resuscitation with left ventricular assist device support reduces interleukins 6 and 8 levels. Ann Thorac Surg 1997; 63: 971–4

    Article  PubMed  CAS  Google Scholar 

  82. Hasper D, Hummel M, Kleber FX, et al. Systemic inflammation in patients with heart failure. Eur Heart J 1998; 19: 761–5

    Article  PubMed  CAS  Google Scholar 

  83. McMurray J, Chopra M, Abdullah I, et al. Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 1993; 14: 1493–8

    Article  PubMed  CAS  Google Scholar 

  84. Keith M, Geranmayegan A, Sole MJ, et al. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998; 31: 1352–6

    Article  PubMed  CAS  Google Scholar 

  85. Guyton KZ, Liu Y, Gorospe M, et al. Activation of mitogen-activated protein kinase by H2O2: role in cell survival following oxidant injury. J Biol Chem 1996; 271: 4138–42

    Article  PubMed  CAS  Google Scholar 

  86. Huot J, Houle F, Marceau F, et al. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 1997; 80: 383–92

    Article  PubMed  CAS  Google Scholar 

  87. Mendez C, Garcia I, Maier RV. Oxidants augment endotoxin-induced activation of alveolar macrophages. Shock 1996; 6: 157–63

    PubMed  CAS  Google Scholar 

  88. Kubota T, McNamara DM, Wang JJ, et al. Effects of tumor necrosis factor gene polymorphisms on patients with congestive heart failure. Circulation 1998; 97: 2499–501

    Article  PubMed  CAS  Google Scholar 

  89. Opal SM, Yu Jr RL. Antiendotoxin strategies for the prevention and treatment of septic shock. New approaches and future directions. Drugs 1998; 55(4): 497–508

    Article  PubMed  CAS  Google Scholar 

  90. Ziegler EJ, Fisher Jr CJ, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin: a randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. New Engl J Med 1991; 324: 429–38

    Article  PubMed  CAS  Google Scholar 

  91. Greenman RL, Schein RM, Martin MA, et al. A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis: the XOMA Sepsis Study Group. JAMA 1991; 266: 1097–102

    Article  PubMed  CAS  Google Scholar 

  92. Bone RC, Balk RA, Fein AM, et al. A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomized, controlled trial: the E5 Sepsis Study Group. Crit Care Med 1995; 23: 994–1006

    Article  PubMed  CAS  Google Scholar 

  93. Donta ST, Peduzzi P, Cross AS, et al. Immunoprophylaxis against klebsiella and pseudomonas aeruginosa infections: the Federal Hyperimmune Immunoglobulin Trial Study Group. J Infect Dis 1996; 174: 537–47

    Article  PubMed  CAS  Google Scholar 

  94. Pajkrt D, Doran JE, Koster F, et al. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 1996; 184: 1601–8

    Article  PubMed  CAS  Google Scholar 

  95. Giroir BP, Quint PA, Barton P, et al. Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/permeability-increasing protein in children with severe meningococcal sepsis. Lancet 1997; 350: 1439–43

    Article  PubMed  CAS  Google Scholar 

  96. Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–11

    Article  PubMed  CAS  Google Scholar 

  97. Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–46

    Article  PubMed  CAS  Google Scholar 

  98. Mallinin NL, Boldin MP, Kovalenko AV, et al. MAP3K-related kinase involved in NFκB induction by TNF, CD95 and IL-1. Nature 1997; 385: 540–4

    Article  Google Scholar 

  99. Shakov AN, Collart MA, Vassalli P, et al. Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor-α gene in primary macrophages. J Exp Med 1990; 171: 35–47

    Article  Google Scholar 

  100. Cuenda A, Rouse J, Doza YN, et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995; 364: 229–33

    Article  PubMed  CAS  Google Scholar 

  101. Sung CP, Arleth AJ, Eichman C, et al. Carvedilol, a multiple-action neurohumoral antagonist, inhibits mitogen-activated protein kinase and cell cycle progression in vascular smooth muscle cells. J Pharmacol Exp Ther 1997; 283: 910–7

    PubMed  CAS  Google Scholar 

  102. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–71

    Article  PubMed  CAS  Google Scholar 

  103. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 1991; 10: 2247–58

    PubMed  CAS  Google Scholar 

  104. Muller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclearfactor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993; 187: 233–56

    Article  PubMed  CAS  Google Scholar 

  105. Schmidt KN, Amstad P, Cerutti P, et al. The roles of hydrogen peroxide and Superoxide as messengers in the activation of transcription factor NF-kappa B. Chem Biol 1995; 2: 13–22

    Article  PubMed  CAS  Google Scholar 

  106. Lee JS, Kahlon SS, Culbreth R, et al. Modulation of monocyte chemokine production and nuclear factor kappa B activity by oxidants. J Interferon Cytokine Res 1999; 19: 761–7

    Article  PubMed  CAS  Google Scholar 

  107. Liu SL, Degli Esposti S, Yao T, et al. Vitamin E therapy of acute CC14-induced hepatic injury in mice is associated with inhibition of nuclear factor kappa B binding. Hepatology 1995; 22: 1474–81

    PubMed  CAS  Google Scholar 

  108. Mihm S, Galter D, Droge W. Modulation of transcription factor NF kappa B activity by intracellular glutathione levels and by variations of the extracellular cysteine supply. FASEB J 1995; 9: 246–52

    PubMed  Google Scholar 

  109. Yue TL, Cheng HY, Lysko PG, et al. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther 1992; 263: 92–8

    PubMed  CAS  Google Scholar 

  110. Suzuki S, Sato H, Shimada H, et al. Comparative free radical scavenging action of angiotensin-converting enzyme inhibitors with and without the sulfhydryl radical. Pharmacology 1993; 47: 61–5

    Article  PubMed  CAS  Google Scholar 

  111. Fukuzawa M, Satoh J, Sagara M, et al. Angiotensin converting enzyme inhibitors suppress production of tumor necrosis factor-alpha in vitro and in vivo. Immunopharmacology 1997; 36: 49–55

    Article  PubMed  CAS  Google Scholar 

  112. Peeters AC, Netea MG, Kullberg BJ, et al. The effect of renin-angiotensin system inhibitors on pro- and anti-inflammatory cytokine production. Immunology 1998; 94: 376–9

    Article  PubMed  CAS  Google Scholar 

  113. Morisco C, Trimarco B, Condorelli M. Effect of coenzyme Q10 therapy in patients with congestive heart failure: a long-term multicenter randomized study. Clin Investig 1993; 71: S134–6

    Article  PubMed  CAS  Google Scholar 

  114. Permanetter B, Rossy W, Klein G, et al. Ubiquinone (coenzyme Q10) in the long-term treatment of idiopathic dilated cardiomyopathy. Eur Heart J 1992; 13: 1528–33

    PubMed  CAS  Google Scholar 

  115. Loh E, Rebbeck TR, Mahoney PD, et al. Common variant in AMPD1 gene predicts improved clinical outcome in patients with heart failure. Circulation 1999; 99: 1422–5

    Article  PubMed  CAS  Google Scholar 

  116. Matsumori A, Shioi T, Yamada T, et al. Vesnarinone, a new inotropic agent, inhibits cytokine production by stimulated human blood from patients with heart failure. Circulation 1994; 89: 955–8

    Article  PubMed  CAS  Google Scholar 

  117. Feldman AM, Bristow MR, Parmley WW, et al. Effects of ves-narinone on morbidity and mortality in patients with heart failure. N Engl J Med 1993; 329: 149–55

    Article  PubMed  CAS  Google Scholar 

  118. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 1991; 325: 1468–75

    Article  PubMed  CAS  Google Scholar 

  119. Cohn JN, Goldstein SO, Greenberg BH, et al. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone Trial Investigators. N Engl J Med 1998; 339: 1810–6

    Article  PubMed  CAS  Google Scholar 

  120. Sliwa K, Skudicky D, Candy G, et al. Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 1998; 351: 1091–3

    Article  PubMed  CAS  Google Scholar 

  121. Zabel P, Wolter DT, Schönharting MM, et al. Oxpentifylline in endotoxaemia. Lancet 1989; II: 1474–7

    Article  Google Scholar 

  122. Skudicky D, Sliwa K, Bergemann A, et al. Long-term effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy: one-year results [abstract]. Eur Heart J 1999; 20: P620

    Google Scholar 

  123. McGeehan GM, Becherer JD, Bast Jr RC, et al. Regulation of tumor necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 1994; 370: 558–61

    Article  PubMed  CAS  Google Scholar 

  124. Amour A, Slocombe PM, Webster A, et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 1998; 435: 39–44

    Article  PubMed  CAS  Google Scholar 

  125. Fisher Jr CJ, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 1996; 334: 1697–702

    Article  PubMed  CAS  Google Scholar 

  126. Cohen J, Carlet J. INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 1996; 24: 1431–40

    Article  PubMed  CAS  Google Scholar 

  127. Abraham E, Anzueto A, Gutierrez G, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumor necrosis factor in treatment of septic shock: NORASEPT II Study Group. Lancet 1998; 351: 929–33

    PubMed  CAS  Google Scholar 

  128. Elliott MJ, Maini RN, Feldmann M, et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor-α (cA2) versus placebo in rheumatoid arthritis. Lancet 1994; 344: 1105–10

    Article  PubMed  CAS  Google Scholar 

  129. Moreland LW, Baumgartner SW, Schiff MH, et al. Treatment of rheumatoid arthritis with a recombinant human tumour necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 1997; 337: 141–7

    Article  PubMed  CAS  Google Scholar 

  130. Stack WA, Mann SD, Roy AJ, et al. Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease. Lancet 1997; 349: 521–4

    Article  PubMed  CAS  Google Scholar 

  131. Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s disease cA2 Study Group. N Engl J Med 1997; 337: 1029–34

    Article  PubMed  CAS  Google Scholar 

  132. Present DH, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999; 340: 1398–405

    Article  PubMed  CAS  Google Scholar 

  133. Deswal A, Bozkurt B, Seta Y, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etaner-cept) in patients with advanced heart failure. Circulation 1999; 99: 3224–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Aidan Bolger is supported by the British Heart Foundation Montagne-Barlow Junior Research Fellowship. Dr Stefan Anker is supported with a postgraduate fellowship of the Max Delbrück Centrum for Molecular Medicine, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan D. Anker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolger, A.P., Anker, S.D. Tumour Necrosis Factor in Chronic Heart Failure. Drugs 60, 1245–1257 (2000). https://doi.org/10.2165/00003495-200060060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200060060-00002

Keywords

Navigation