Skip to main content
Log in

Pharmacokinetic Imaging

A Noninvasive Method for Determining Drug Distribution and Action

  • Review Article
  • Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Advances in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance spectroscopy (MRS), and the ability to label a wide variety of compounds for in vivo use in humans, have created a new technology for making precise physiological and pharmacological measurements. Due to the noninvasive nature of these approaches, repetitive and/or continuous measurements have become possible. Thus far, these techniques have been primarily used for one-time assessments of individuals. However, experience suggests that a major use of this technology will be in the evaluation of new drug therapies. Already, these techniques have been used to measure precisely and noninvasively the pharmacokinetics of a variety of antimicrobial, antineoplastic and CNS agents. In the case of CNS drugs, imaging techniques (particularly PET) have been used to define the classes of neuro-receptors with which the drug interacts. The physiological, pharmacological and biochemical measurements that can be performed noninvasively using modern imaging techniques can greatly facilitate the evaluation of new therapies. These measurements are most likely to be useful during drug development in preclinical studies and in phase I/II human studies. Preclinically, new drugs can be precisely compared with standard therapies, or a series of analogues can be screened for further development on the basis of performance in animal models. In Phase I/II, imaging measurements can be combined with classical pharmacokinetic data to establish optimal administration schedules, evaluate the utility of interventions in specific clinical situations, and aid in the design of Phase III trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Table II
Fig. 5
Table III
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Table IV
Table V

Similar content being viewed by others

References

  1. Sorenson JA, Phelps ME. Physics in nuclear medicine. The Anger camera: basic principles. 2nd ed. New York: Grune & Stratton, Inc, 1987: 298–317

    Google Scholar 

  2. Hoffman EJ, Phelps ME. Positron emission tomography: principles and quantitation. In: Phelps ME, Massiotta JC, Schelbert MR, editors. Positron emission tomography and autoradiography. New York: Raven Press, 1986: 237–86

    Google Scholar 

  3. Phelps ME, Hoffman EJ, Mullani NA, et al. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 1975; 16: 210–24

    PubMed  CAS  Google Scholar 

  4. Fowler JS, Wold AP. Positron emitter-labeled compounds: priorities and problems. In: Phelps ME, Massiotta JC, Schelbert HR, editors. Positron emission tomography and autoradiography. New York: Raven Press, 1986: 391–450

    Google Scholar 

  5. Fischman AJ, Alpert NM, Livni E, et al. Pharmacokinetics of 18F-labeled fluconazole in rabbits with candidal infections studied with positron emission tomography. J Pharmacol Exp Ther 1991; 259: 1351–9

    PubMed  CAS  Google Scholar 

  6. Ginos JZ, Cooper AJ, Dhawan V, et al. [13N]cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors. J Nucl Med 1987; 28: 1844–52

    PubMed  CAS  Google Scholar 

  7. Mitsuki S, Diksic M, Conway T, et al. Pharmacokinetics of 11C-labelled BCNU and SarCNU in gliomas studied by PET. J Neurooncol 1991; 10: 47–55

    Article  PubMed  CAS  Google Scholar 

  8. Conway T, Diksic M. PET studies of potential chemotherapeutic agents: X. Synthesis of “no-carrier-added” (11C)-HECNU: the hydroxyethyl analog of the chemotherapeutic agent BCNU. Int J Rad Appl Instrum [A] 1991; 42: 441–6

    Article  CAS  Google Scholar 

  9. Inoue T, Kim EE, Wallace S, et al. Preliminary study of cardiac accumulation of F-18 fluorotamoxifen in patients with breast cancer. Clin Imaging 1997; 21: 332–6

    Article  PubMed  CAS  Google Scholar 

  10. Brady F, Luthra SK, Brown G, et al. Carbon-11 labelling of the antitumour agent N-[2- (dimethylamino)ethyl]acridine-4-carboxamide (DACA) and determination of plasma metabolites in man. Appl Radiat Isot 1997; 48: 487–92

    Article  PubMed  CAS  Google Scholar 

  11. Meikle SR, Matthews JC, Brock CS, et al. Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmacol 1998; 42: 183–93

    Article  PubMed  CAS  Google Scholar 

  12. Saleem A, Aboagye EO, Price PM. In vivo monitoring of drugs using radiotracer techniques. Adv Drug Deliv Rev 2000; 41: 21–39

    Article  PubMed  CAS  Google Scholar 

  13. Pike VW, Palmer AJ, Horlock PL, et al. Semi-automated preparation of a 11C-labelled antibiotic—[N-methyl-11C]erythromycin A lactobionate. Int J Appl Radiat Isot 1984; 35(2): 103–9

    Article  PubMed  CAS  Google Scholar 

  14. Livni E, Fischman AJ, Ray S, et al. Synthesis of 18F-labeled fluconazole and positron emission tomography in rabbits. Int J Appl Radiat Isot Part B 1992; 19: 191–9

    CAS  Google Scholar 

  15. Livni E, Babich J, Alpert NM, et al. Synthesis and biodistribution of 18F-labeled fleroxacin. Nucl Med Biol 1993; 20: 81–7

    Article  PubMed  CAS  Google Scholar 

  16. Tewson TJ. Synthesis of fluorine-18 lomefloxacin, a fluorinated quinolone antibiotic. J Labeled Compds Radiopharm 1993; 32: 145–6

    Google Scholar 

  17. Babich JW, Rubin RH, Vincent J, et al. 18F-Labeling and biodistribution of the novel fluoroquinolone antimicrobial agent, trovafloxacin (CP-99,214). Nucl Med Biol 1996; 23: 995–8

    Article  PubMed  CAS  Google Scholar 

  18. Wollmer P, Rhodes CG, Pike VW, et al. Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron emission tomography. Lancet 1982; II: 1361–4

    Article  Google Scholar 

  19. Richardson K, Cooper K, Marriott MS, et al. Design and synthesis of a systemically active agent, fluconazole. Ann N Y Acad Sci 1988; 544: 4–11

    Article  PubMed  CAS  Google Scholar 

  20. Richardson K. The discovery and profile of fluconazole. J Chemother 1990; 2: 51–4

    PubMed  CAS  Google Scholar 

  21. Richardson K, Cooper K, Tarbit MH, et al. Discovery of fluconazole, a novel antifungal agent. Rev Infect Dis Supp 1990; 3: 267–71

    Article  Google Scholar 

  22. Van den Bossche H, Willemsens G, Cools W, et al. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother 1980; 17: 922–8

    Article  PubMed  Google Scholar 

  23. Van den Bossche H, Willemsens G, Cools W, et al. Hypothesis on the molecular basis of the antifungal activities of N-substituted imidazoles and triazoles. Biochem Soc Trans 1983; 11: 665–7

    PubMed  Google Scholar 

  24. Van den Bossche H. Biochemical targets for antifungal azolederivative: hypothesis of the mode of action. Curr Top Med Mycol 1985; 1: 313–51

    Article  Google Scholar 

  25. Watson PF, Rose ME, Ellis SW, et al. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun 1989; 164: 1170–5

    Article  PubMed  CAS  Google Scholar 

  26. Van Cauteren H, Lampo A, Vandenberghe J, et al. Toxicological profile and safety evaluation of antifungal azole derivatives. Mycoses 1989; 32 Suppl. 1: 60–6

    PubMed  Google Scholar 

  27. Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 1988; 32: 1–8

    Article  PubMed  CAS  Google Scholar 

  28. Larsen RA, Leal MA, Chan LS. Fluconazole compared with amphotericin B plus flucytosine for cryptococcal meningitis in AIDS: a randomized trial. Ann Intern Med 1990; 113: 183–7

    PubMed  CAS  Google Scholar 

  29. Humphrey MJ, Jevons S, Tarbit MH. Pharmacokinetic evaluation of UK-49,858, a metabolically stable triazole antifungal drug, in animals and humans. Antimicrob Agents Chemother 1985; 28: 648–53

    Article  PubMed  CAS  Google Scholar 

  30. Walsh TJ, Foulds G, Pizzo PA. Pharmacokinetics and tissue penetration of fluconazole in rabbits. Antimicrob Agents Chemother 1989; 33: 467–9

    Article  PubMed  CAS  Google Scholar 

  31. Brammer KW, Farrow PR, Faulkner JK. Pharmacokinetics and tissue penetration of fluconazole in humans. Rev Infect Dis 1990; 12 Suppl. 3: 318–26

    Article  Google Scholar 

  32. Debruyne D, Ryckelynck JP, Bigot MC, et al. Determination of fluconazole in biological fluids by capillary column gas chromatography with a nitrogen detector. J Pharm Sci 1988; 77: 534–5

    Article  PubMed  CAS  Google Scholar 

  33. Ebden P, Neill P, Farrow PR. Sputum levels of fluconazole in humans. Antimicrob Agents Chemother 1989; 33: 963–4

    Article  PubMed  CAS  Google Scholar 

  34. Foulds G, Brennan DR, Wajszczuk C, et al. Fluconazole penetration into cerebral spinal fluid. J Clin Pharmacol 1988; 28: 363–6

    PubMed  CAS  Google Scholar 

  35. Foulds G, Wajszczuk C, Weidler DJ, et al. Steady state parenteral kinetics of fluconazole in man. Ann N Y Acad Sci 1988; 544: 427–30

    Article  PubMed  CAS  Google Scholar 

  36. Fischman AJ, Alpert NM, Livni E, et al. Pharmacokinetics of 18F-labeled fluconazole in normal human subjects studied with positron emission tomography. Antimicrob Agents Chemother 1993; 37: 1270–7

    Article  PubMed  CAS  Google Scholar 

  37. Livni E, Babich J, Alpert NM, et al. Synthesis and biodistribution of 18F-labeled fleroxacin. Nucl Med Biol 1993; 20: 81–7

    Article  PubMed  CAS  Google Scholar 

  38. Fischman AJ, Livni E, Babich J, et al. Pharmacokinetics of 18F-labeled fleroxacin in rabbits with E. coli infections studied with positron emission tomography. Antimicrob Agents Chemother 1992; 36: 2286–92

    Article  PubMed  CAS  Google Scholar 

  39. Fischman AJ, Livni E, Babich J, et al. Pharmacokinetics of [18F]fleroxacin in normal human subjects studied with positron emission tomography. Antimicrob Agents Chemother 1993; 37: 2144–52

    Article  PubMed  CAS  Google Scholar 

  40. Fischman AJ, Livni E, Babich JW, et al. Pharmacokinetics of [18F] fleroxacin in patients with acute exacerbations of chronic bronchitis and complicated urinary tract infection studied with positron emission tomography. Antimicrob Agents Chemother 1996; 40: 659–64

    PubMed  CAS  Google Scholar 

  41. Farde L, Halldin C, Stone-Elander S, et al. PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berl) 1987; 92: 278–84

    Article  CAS  Google Scholar 

  42. Farde L, Wiesel FA, Nordstrom AL, et al. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berl) 1989; 99: S28–31

    Article  Google Scholar 

  43. Farde L. Selective D1- and D2-dopamine receptor blockade both induces akathisia in humans: a PET study with [11C]-SCH 23390 and [11C]raclopride. Psychopharmacology (Berl) 1992; 107: 23–9

    Article  CAS  Google Scholar 

  44. Farde L, Nordstrom AL, Wiesel FA, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry 1992; 49: 538–44

    Article  PubMed  CAS  Google Scholar 

  45. McQuade RD, Duffy RA, Coffin VL, et al. In vivo binding of SCH 39166: a D-1 selective antagonist. J Pharmacol Exp Ther 1991; 257: 42–9

    PubMed  CAS  Google Scholar 

  46. Wagner HN, Burns HD, Dannals RF, et al. Imaging dopamine receptors in the human brain by positron tomography. Science 1983; 221: 1264–6

    Article  PubMed  CAS  Google Scholar 

  47. Maziere B, Loc’h C, Hantraye P, et al. 76Br-bromospiroperidol: a new tool for quantitative in-vivo imaging of neuroleptic receptors. Life Sci 1984; 35: 1349–56

    Article  PubMed  CAS  Google Scholar 

  48. Maziere B, Loch C, Stulzaft O, et al. [76Br]Bromolisuride: a new tool for quantitative in vivo imaging of D-2 dopamine receptors. Eur J Pharmacol 1986; 127: 239–47

    Article  PubMed  CAS  Google Scholar 

  49. Hantraye P, Brownell AL, Elmaleh D, et al. Dopamine fiber detection by 11C-CFT and PET in a primate model of Parkinsonism. Neuroreport 1992; 3: 265–8

    Article  PubMed  CAS  Google Scholar 

  50. Fischman AJ, Bonab AA, Babich JW, et al. [11C,127I]Altropane: a highly selective ligand for PET imaging of dopamine transporter sites. Synapse 2001; 39: 332–42

    Article  PubMed  CAS  Google Scholar 

  51. Blin J, Sette G, Fiorelli M, et al. A method for the in vivo investigation of the serotonergic 5-HT2 receptors in the human cerebral cortex using positron emission tomography and 18F-labeled setoperone. J Neurochem 1990; 54: 1744–54

    Article  PubMed  CAS  Google Scholar 

  52. Wong DF, Lever JR, Hartig PR, et al. Localization of serotonin 5-HT2 receptors in living human brain by positron emission tomography using N1-([11C]-methyl)-2-Br-LSD. Synapse 1987; 1: 393–8

    Article  PubMed  CAS  Google Scholar 

  53. Parsey RV, Slifstein M, Hwang DR, et al. J Cereb Blood Flow Metab 2000; 20: 1111–33

    Article  PubMed  CAS  Google Scholar 

  54. Maziere M, Hantraye P, Kaijima M, et al. Visualization by positron emission tomography of the apparent regional heterogeneity of central type benzodiazepine receptors in the brain of living baboons. Life Sci 1985; 36: 1609–16

    Article  PubMed  CAS  Google Scholar 

  55. Charbonneau P, Syrota A, Crouzel C, et al. Peripheral-type benzodiazepine receptors in the living heart characterized by positron emission tomography. Circulation 1986; 73: 476–83

    Article  PubMed  CAS  Google Scholar 

  56. Frost JJ, Mayberg HS, Fisher RS, et al. Mu-receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann Neurol 1988; 23: 231–7

    Article  PubMed  CAS  Google Scholar 

  57. Jones AK, Luthra SK, Maziere B, et al. Regional cerebral opioid receptor studies with [11C]diprenorphine in normal volunteers. J Neurosci Methods 1988; 23: 121–9

    Article  PubMed  CAS  Google Scholar 

  58. Pert CB, Danks JA, Channing MA, et al. 3-[18F]Acetylcyclofoxy: a useful probe for the visualization of opiate receptors in living animals. FEBS Lett 1984; 177: 281–6

    Article  PubMed  CAS  Google Scholar 

  59. Syrota A, Paillotin G, Davy JM, et al. Kinetics of in vivo binding of antagonist to muscarinic cholinergic receptor in the human heart studied by positron emission tomography. Life Sci 1984; 35: 937–45

    Article  PubMed  CAS  Google Scholar 

  60. Dannals RF, Langstrom B, Ravert HT, et al. Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide. Int J Rad Appl Instrum [A] 1988; 39: 291–5

    Article  CAS  Google Scholar 

  61. Frey KA, Koeppe RA, Mulholland GK, et al. Muscarinic receptor imaging in human brain using [C-11] scopolamine and positron emission tomography [abstract]. J Nucl Med 1988; 29: 808

    Google Scholar 

  62. Dewey SL, MacGregor RR, Brodie JD, et al. Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse 1990; 5: 213–23

    Article  PubMed  CAS  Google Scholar 

  63. Syrota A. In vivo investigation of myocardial perfusion, metabolism and receptors by positron emission tomography. Int J Microcirc Clin Exp 1989; 8: 411–22

    PubMed  CAS  Google Scholar 

  64. Frey KA, Hichwa RD, Ehrenkaufer RL, et al. Quantitative in vivo receptor binding III: tracer kinetic modeling of muscarinic cholinergic receptor binding. Proc Natl Acad Sci U S A 1985; 82: 6711–5

    Article  PubMed  CAS  Google Scholar 

  65. Wong DF, Gjedde A, Wagner HN, et al. Quantification of neuroreceptors in the living human brain: II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metab 1986; 6: 147–53

    Article  PubMed  CAS  Google Scholar 

  66. Farde L, Eriksson L, Blomquist G, et al. Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET: a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 1989; 9: 696–708

    Article  PubMed  CAS  Google Scholar 

  67. Delforge J, Loch C, Hantraye P, et al. Kinetic analysis of central [76Br]bromolisuride binding to dopamine D2 receptors studied by PET. J Cereb Blood Flow Metab 1991; 11: 914–25

    Article  PubMed  CAS  Google Scholar 

  68. Morris ED, Alpert NM, Fischman AJ. Comparison of two compartmental models for describing receptor ligand kinetics and receptor availability in multiple injection PET studies. J Cereb Blood Flow Metab 1996; 16: 841–53

    Article  PubMed  CAS  Google Scholar 

  69. Huang SC, Bahn MM, Barrio JR, et al. A double-injection technique for in vivo measurement of dopamine D2-receptor density in monkeys with 3-(2′-[18F]fluoroethyl)spiperone and dynamic positron emission tomography. J Cereb Blood Flow Metab 1989; 9: 850–8

    Article  PubMed  CAS  Google Scholar 

  70. Farde L, Hall H, Ehrin E, et al. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 1986; 231: 258–61

    Article  PubMed  CAS  Google Scholar 

  71. Huang SC, Barrio JR, Phelps ME. Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab 1986; 6: 515–21

    Article  PubMed  CAS  Google Scholar 

  72. Farde L, Hall H, Ehrin E, et al. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 1986; 231: 258–61

    Article  PubMed  CAS  Google Scholar 

  73. Mintun MA, Raichle ME, Kilbourne MR, et al. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984; 15: 217–27

    Article  PubMed  CAS  Google Scholar 

  74. Fischman AJ, Bonab AA, Babich JW, et al. Positron emission tomographic analysis of central 5HT2 receptor occupancy in healthy volunteers treated with the novel antipsychotic agent, ziprasidone. J Pharmacol Exp Ther 1996; 279: 939–47

    PubMed  CAS  Google Scholar 

  75. Petit-Taboue MC, Landeau B, Osmont A, et al. Estimation of neocortical serotonin-2-receptor binding potential by single dose 18F-setoperone kinetic PET data analysis. J Nucl Med 1996; 37: 95–104

    PubMed  CAS  Google Scholar 

  76. Christian BT, Livni E, Babich JW, et al. Evaluation of cerebral pharmacokinetics of the novel antidepressant drug, BMS-181101, by positron emission tomography. J Pharmacol Exp Ther 1996; 279: 325–31

    PubMed  CAS  Google Scholar 

  77. Patlak CS, Blasberg RG, Fensternmacher JD. Graphical evaluation of blood-to-brain transfer constants in multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3: 1–7

    Article  PubMed  CAS  Google Scholar 

  78. Logan J, Fowler JS, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990; 10: 740–7

    Article  PubMed  CAS  Google Scholar 

  79. Fukumoto M, Yoshida D, Hayase N, et al. Scintigraphic prediction of resistance to radiation and chemotherapy in patients with lung carcinoma: technetium 99m-tetrofosmin and thallium-201 dual single photon emission computed tomography study. Cancer 1999; 86: 1470–9

    Article  PubMed  CAS  Google Scholar 

  80. Malison RT, Best SE, Wallace EA, et al. Euphorigenic doses of cocaine reduce [123I] beta-CIT SPECT measures of dopamine transporter availability in human cocaine addicts. Psychopharmacology (Berl) 1995; 122: 358–62

    Article  CAS  Google Scholar 

  81. Malison RT, McCance E, Carpenter LL, et al. [123I] beta-CIT SPECT imaging of dopamine transporter availability after mazindol administration in human cocaine addicts. Psychopharmacology (Berl) 1998; 137: 321–5

    Article  CAS  Google Scholar 

  82. Christensen JD, Yurgelun-Todd DA, Babb SM, et al. Measurement of human brain dexfenfluramine concentration by 19F magnetic resonance spectroscopy. Brain Res 1999; 834: 1–5

    Article  PubMed  CAS  Google Scholar 

  83. Budinger TF. Emerging nuclear magnetic resonance techniques: health and safety. Ann N Y Acad Sci 1992; 649: 1–18

    Article  PubMed  CAS  Google Scholar 

  84. Wolf W, Presant CA, Waluch V. 19F-MRS studies of fluorinated drugs in humans. Adv Drug Deliv Rev 2000; 41: 55–74

    Article  PubMed  CAS  Google Scholar 

  85. Wolf W, Waluch V, Presant CA. Non-invasive 19F-MRS of 5-fluorouracil in pharmacokinetic and pharmacodynamic studies. NMR Biomed 1998; 11: 380–7

    Article  PubMed  CAS  Google Scholar 

  86. Belleman ME, Haberkorn U, Gerlach L, et al. Imaging of the biodistribution and metabolism of the antineoplastic agent gemcitabine in tumor bearing rats [abstract]. Proc Int Soc Magn Res Med 1999; 7: 1353

    Google Scholar 

  87. Workman P, Maxwell RJ, Griffiths JR. Non-invasive MRS in new anticancer drug development. NMR Biomed 1992; 5: 270–2

    Article  PubMed  CAS  Google Scholar 

  88. Aboagye EO, Maxwell RJ, Kelson AB, et al. Preclinical evaluation of the fluorinated 2-nitroimidazole N-(2- hydroxy-3,3,3-trifluoropropyl)-2-(2-nitro-1-imidazolyl) acetamide (SR-4 554) as a probe for the measurement of tumor hypoxia. Cancer Res 1997; 57: 3314–8

    PubMed  CAS  Google Scholar 

  89. He Q, Bhujwalla ZM, Maxwell RJ, et al. Proton NMR observation of the antineoplastic agent iproplatin in vivo by selective multiple quantum coherence transfer (Sel-MQC). Magn Reson Med 1995; 33: 414–6

    Article  PubMed  CAS  Google Scholar 

  90. Rodrigues LM, Maxwell RJ, McSheehy PM, et al. In vivo detection of ifosfamide by 31P-MRS in rat tumours: increased uptake and cytotoxicity induced by carbogen breathing in GH3 prolactinomas. Br J Cancer 1997; 75: 62–8

    Article  PubMed  CAS  Google Scholar 

  91. Artemov D, Bhujwalla ZM, Maxwell RJ, et al. Pharmacokinetics of the 13C labeled anticancer agent temozolomide detected in vivo by selective cross-polarization transfer. Magn Reson Med 1995; 34: 338–42

    Article  PubMed  CAS  Google Scholar 

  92. Becker M, Port RE, Zabel HJ, et al. Monitoring local disposition kinetics of carboplatin in vivo after subcutaneous injection in rats by means of 195Pt NMR. J Magn Reson 1998; 133: 115–22

    Article  PubMed  CAS  Google Scholar 

  93. Aboagye EO, Dillehay LE, Bhujwalla ZM, et al. Hypoxic cell cytotoxin tirapazamine induces acute changes in tumor energy metabolism and pH: a 31P magnetic resonance spectroscopy study. Radiat Oncol Investig 1998; 6: 249–54

    Article  PubMed  CAS  Google Scholar 

  94. Griffiths JR Glickson JD. Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev 2000; 41: 75–89

    Article  PubMed  CAS  Google Scholar 

  95. Jynge P, Skjetne T, Gribbestad I, et al. In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans. Clin Pharmacol Ther 1990; 48(5): 481–9

    Article  PubMed  CAS  Google Scholar 

  96. Renshaw PF, Wicklund S. In vivo measurement of lithium in humans by nuclear magnetic resonance spectroscopy. Biol Psychiatry 1988; 23: 465–75

    Article  PubMed  CAS  Google Scholar 

  97. Gonzalez RG, Guimaraes AR, Sachs GS, et al. Measurement of human brain lithium in vivo by MR spectroscopy. AJNR Am J Neuroradiol 1993; 14: 1027–37

    PubMed  CAS  Google Scholar 

  98. Renshaw PF, Guimaraes AR, Fava M, et al. Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. Am J Psychiatry 1992; 149: 1592–4

    PubMed  CAS  Google Scholar 

  99. Henry ME, Moore CM, Kaufman MJ, et al. Brain kinetics of paroxetine and fluoxetine on the third day of placebo substitution: a fluorine MRS study. Am J Psychiatry 2000; 157: 1506–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Studies from our laboratory that were presented in this review were supported in part by grants from Bristol-Myers Squibb Inc., Pfizer Inc., and the US Public Health Service.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischman, A.J., Alpert, N.M. & Rubin, R.H. Pharmacokinetic Imaging. Clin Pharmacokinet 41, 581–602 (2002). https://doi.org/10.2165/00003088-200241080-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241080-00003

Keywords

Navigation