Skip to main content
Log in

Clinical Pharmacokinetics of Cerivastatin

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cerivastatin sodium, a novel statin, is a synthetic, enantiomerically pure, pyridine derivative that effectively reduces serum cholesterol levels at microgram doses. Cerivastatin is readily and completely absorbed from the gastrointestinal tract, with plasma concentrations reaching a peak 2 to 3 hours postadministration followed by a monoexponential decay with an elimination half-life (t½,β) of 2 to 3 hours. Cerivastatin pharmacokinetics are linear: maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC) are proportional to the dose over the range of 0.05 to 0.8mg. No accumulation is observed on repeated administration. Cerivastatin interindividual variability is described by coefficients of variation of approximately 30 to 40% for its primary pharmacokinetic parameters AUC, Cmax and t½,β.

The mean absolute oral bioavailability of cerivastatin is 60% because of presystemic first-pass effects. Its pharmacokinetics are not influenced by concomitant administration of food nor by the time of day at which the dose is given. Age, gender, ethnicity and concurrent disease also have no clinically significant effects.

Cerivastatin is highly bound to plasma proteins (>99%). The volume of distribution at steady state of about 0.3 L/kg indicates that the drug penetrates only moderately into tissue; conversely, preclinical studies have shown a high affinity for liver tissue, the target site of action.

Cerivastatin is exclusively cleared via metabolism. No unchanged drug is excreted. Cerivastatin is subject to 2 main oxidative biotransformation reactions: demethylation of the benzylic methyl ether moiety leading to the metabolite M-1 [catalysed by cytochrome P450 (CYP) 2C8 and CYP3A4] and stereoselective hydroxylation of one methyl group of the 6-isopropyl substituent leading to the metabolite M-23 (catalysed by CYP2C8). The product of the combined biotransformation reactions is a secondary minor metabolite, M-24, not detectable in plasma. All 3 metabolites are active inhibitors of hydroxymethylglutaryl-coenzyme A reductase with a similar potency to the parent drug. Approximately 70% of the administered dose is excreted as metabolites in the faeces, and 30% in the urine.

Metabolism by 2 distinct CYP isoforms renders cerivastatin relatively resistant to interactions arising from inhibition of CYP. If one of the pathways is blocked, cerivastatin can be effectively metabolised by the alternative route. In addition, on the basis of in vitro investigations, there is no evidence for either cerivastatin or its metabolites having any inducing or inhibitory activity on CYP. The apparent lack of any clinically relevant interactions with a variety of drugs commonly used by patients in the target population supports this favourable drug-drug interaction profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4,444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9.

    Google Scholar 

  2. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7.

    Article  PubMed  CAS  Google Scholar 

  3. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9.

    Article  PubMed  CAS  Google Scholar 

  4. Angerbauer R, Bischoff H, Steinke W, et al. BAY w 6228. Drugs Future 1994; 19(6): 537–41.

    Google Scholar 

  5. McClellan KJ, Wiseman LR, McTavish D. Cerivastatin. Drugs 1998; 55(3): 415–20.

    Article  PubMed  CAS  Google Scholar 

  6. Stein EA. Extending therapy options in treating lipid disorders: a clinical review of cerivastatin, a novel HMG-CoA reductase inhibitor. Drugs 1998; 56 Suppl. 1: 25–31.

    Article  PubMed  CAS  Google Scholar 

  7. Hanefeld M, Deslypere JP, Ose L, et al. Efficacy and safety of 300µg and 400µg cerivastatin once daily in patients with primary hypercholesterolaemia: a multicentre, randomized, double-blind, placebo-controlled study. J Intern Med Res 1999; 27: 115–29.

    CAS  Google Scholar 

  8. Stein EA, Schopen U, Catagay M. A pooled efficacy analysis of cerivastatin in the treatment of hyperlipidemia. Clin Drug Invest 1999; 18(6): 433–44.

    Article  CAS  Google Scholar 

  9. Bischoff H, Angerbauer R, Bender J, et al. Cerivastatin: pharmacology of a novel synthetic and highly active HMG-CoA reductase inhibitor. Atherosclerosis 1997; 135: 119–30.

    Article  PubMed  CAS  Google Scholar 

  10. Bischoff H, Angerbauer R, Boberg M, et al. Preclinical review of cerivastatin sodium: a step forward in HMG-CoAreductase inhibition. Atherosclerosis 1998; 139 Suppl. 1: S7–13.

    Article  PubMed  CAS  Google Scholar 

  11. von Keutz E, Schlüter G. Preclinical safety evaluation of cerivastatin, a novel HMG-CoA reductase inhibitor. Am J Cardiol 1998; 82(4B): 11J–7J.

    Article  Google Scholar 

  12. Steinke W, Yamashita S, Tabei M, et al. Cerivastatin, a new inhibitor of HMG-CoA reductase: pharmacokinetics in rats and dogs. Jpn Pharmacol Ther 1996; 24 Suppl. 9: 1217–37.

    Google Scholar 

  13. Bischoff H, Heller AH. Preclinical and clinical pharmacology of cerivastatin. Am J Cardiol 1998; 82(4B): 18J–25J.

    Article  PubMed  CAS  Google Scholar 

  14. Kuhlmann J, Mück W, Bischoff H, et al. Cerivastatin (BAY w 6228): a novel HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 1998; 16(3): 236–63.

    Article  CAS  Google Scholar 

  15. Farnier M, Davignon J. Current and future treatment of hyperlipidemia: the role of statins. Am J Cardiol 1998; 82(4B): 3J–10J.

    Article  PubMed  CAS  Google Scholar 

  16. Stein E, Sprecher D, Allenby KS, et al. Cerivastatin, a new potent synthetic HMG-CoA reductase inhibitor; effect of 0.2mg daily in subjects with primary hypercholesterolemia. J Cardiovasc Pharmacol Ther 1997; 2: 7–16.

    Article  PubMed  CAS  Google Scholar 

  17. Bayer AG Corp., Wuppertal, Germany and West Haven, CT, USA (Data on file).

  18. Joshi HN, Fakes MG, Serajuddin ATM. Differentiation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors by their relative lipophilicity. Pharm Pharmacol Commun 1999; 5: 269–71.

    Article  CAS  Google Scholar 

  19. Ritter W Determination of rivastatin in plasma by GC with double derivatization. In: Reid E, Hill HM, Wilson ED, editors. Biofluid and tissue analysis for drugs, including hypolipidaemics: methodological surveys in bioanalysis of drugs. Vol. 23. Cambridge: Royal Society of Chemistry, 1994: 141–6.

    Google Scholar 

  20. Krol GJ, Beck GW, Ritter W, et al. Determination of rivastatin levels in plasma samples by HPLC and enzyme inhibition assay. In: Reid E, Hill HM, Wilson ED, editors. Biofluid and tissue analysis for drugs, including hypolipidaemics: methodological surveys in bioanalysis of drugs. Vol. 23. Cambridge: Royal Society of Chemistry, 1994: 147–56.

    Google Scholar 

  21. Krol GJ, Beck GW, Ritter W, et al. LC separation and induced fluorometric detection of rivastatin in blood plasma. J Pharm Biomed Anal 1993; 11: 1269–75.

    Article  PubMed  CAS  Google Scholar 

  22. Jemal M, Rao S, Salahudeen I, et al. Quantitation of cerivastatin and its seven acid and lactone biotransformation products in human serum by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B 1999; 736: 19–41.

    Article  CAS  Google Scholar 

  23. Kantola T, Kivistö KT, Neuvonen PJ. Effect of itraconazole on cerivastatin pharmacokinetics. Eur J Clin Pharmacol 1999; 54: 851–5.

    Article  PubMed  CAS  Google Scholar 

  24. Mück W, Ochmann K, Mazzu A, et al. Biopharmaceutical profile of cerivastatin: a novel HMG-CoA reductase inhibitor. J Intern Med Res 1999; 27: 107–14.

    Google Scholar 

  25. Mück W, Ritter W, Ochmann K, et al. Absolute and relative bioavailability of the HMG-CoA reductase inhibitor cerivastatin. Int J Clin Pharmacol Ther; 1997: 35: 255–60.

    PubMed  Google Scholar 

  26. Shitara Y, Lu C, Li AP, et al. Cryopreserved human hepatocytes as a tool for the prediction of in vivo transport and transport-mediated drug-drug interactions [abstract P-040]. 3rd International Conference on Drug Interaction (IDCI); 1999 Oct 21–23; Hamamatsu, 87.

  27. Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Clin Pharmacokinet 1997; 32(5): 403–25.

    Article  PubMed  Google Scholar 

  28. Boberg M, Angerbauer R, Kanhai W, et al. [14C]BAY w 6228: biotransformation in human liver microsomes in vitro. Characterization of primary metabolite pathways and of cytochrome P450 isozymes involved. Drug Metab Dispos 1997; 25: 321–31.

    PubMed  CAS  Google Scholar 

  29. Mück W, Frey R, Unger S, et al. Pharmacokinetics of cerivastatin when administered under fasted and fed conditions in the morning or evening. Int J Clin Pharmacol Ther 2000; 38(6): 298–303.

    PubMed  Google Scholar 

  30. Mück W, Ritter W, Frey R, et al. Influence of cholestyramine on the pharmacokinetics of cerivastatin. Int J Clin Pharmacol Ther 1997; 35(6): 250–4.

    PubMed  Google Scholar 

  31. Mück W, Adelmann HG, Ruf T, et al. Lack of pharmacokinetic drug-drug interaction, between orlistat and cerivastatin. Clin Drug Invest 2000; 19(1): 71–3.

    Article  Google Scholar 

  32. Schall R, Mueller FO, Hundt HK, et al. No pharmacokinetic or pharmacodynamic interaction between rivastatin and warfarin. J Clin Pharmacol 1995; 35(3): 306–13.

    PubMed  CAS  Google Scholar 

  33. Mazzu A, Stein E, Kelly E, et al. Minor alterations in cerivastatin pharmacokinetics by erythromycin and itraconazole [abstract]. Pharmacotherapy 1999; 19(4): 480–1.

    Google Scholar 

  34. Stein E, Isaacsohn J, Stoltz R, et al. Pharmacodynamics, safety, tolerability, and pharmacokinetics of the 0.8-mg dose of cerivastatin in patients with primary hypercholesterolemia. Am J Cardiol 1999; 83(5): 1433–6.

    Article  PubMed  CAS  Google Scholar 

  35. Mück W, Unger S, Kawano K, et al. Interethnic comparisons of the pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Br J Clin Pharmacol 1998; 45: 583–90.

    Article  PubMed  Google Scholar 

  36. Mazzu A, Lettieri J, Kaiser L, et al. Influence of age on the safety, tolerability, and pharmacokinetics of the novel HMG-CoA reductase inhibitor cerivastatin in healthy male volunteers. J Clin Pharmacol 1998; 38(8): 715–9.

    PubMed  CAS  Google Scholar 

  37. Stein EA, Isaacsohn J, Zinny M, et al. Pharmacokinetics, safety and tolerability of multiple-dose cerivastatin in males and females —; a double-blind study [abstract]. Atherosclerosis 1997; 130 Suppl.: S33.

    Article  Google Scholar 

  38. Azuma J. Phase I study of an antihyperlipidaemic BAY w 6228 (cerivastatin sodium) (1): results of single administration studies in healthy adult male volunteers. Jpn Pharmacol Ther 1996; 24 Suppl. 9: 29–36.

    Google Scholar 

  39. Azuma J. Phase I study of an antihyperlipidaemic BAY w 6228 (cerivastatin sodium) (2): results of multiple administration studies in healthy adult male volunteers. Jpn Pharmacol Ther 1996; 24 Suppl. 9: 37–53.

    Google Scholar 

  40. Azuma J. A clinical trial of pharmacokinetics of BAY w 6228 in elderly volunteers. Jpn Pharmacol Ther 1996; 24 Suppl. 9: 55–66.

    Google Scholar 

  41. Gibson DM, Yang BB, Abel RB, et al. Effects of hepatic and renal impairment on pharmacokinetics and pharmacodynamics of atorvastatin [abstract]. Pharm Res 1996; 13(9 Suppl.): S428.

    Google Scholar 

  42. Garnett WR. Interactions with hydroxy-methylglutaryl-coenzyme A reductase inhibitors. Am J Health Syst Pharm 1995; 52: 1639–45.

    PubMed  CAS  Google Scholar 

  43. Mazzu AL, Lettieri JT, Kelly E, et al. Influence of renal function on the pharmacokinetics of cerivastatin in normocholesterolemic adults. Eur J Clin Pharmacol 2000; 56: 69–74.

    Article  PubMed  CAS  Google Scholar 

  44. Vormfelde SV, Mück W, Freudenthaler SM, et al. Pharmacokinetics of cerivastatin in renal impairment are predicted by low serum albumin concentration rather than by low creatinine clearance. J Clin Pharmacol 1999; 39(2): 147–54.

    Article  PubMed  CAS  Google Scholar 

  45. Mück W. Rational assessment of the interaction profile of cerivastatin supports its low propensity for drug interactions. Drugs 1998; 56 Suppl. 1: 15–23.

    Article  PubMed  Google Scholar 

  46. Mück W, Ritter W, Dietrich H, et al. Influence of the antacid Maalox® and the H2-antagonist cimetidine on the pharmacokinetics of cerivastatin. Int J Clin Pharmacol Ther 1997; 35(6): 261–4.

    PubMed  Google Scholar 

  47. Sachse R, Mück W, Ochmann K, et al. Lack of drug-drug interaction between cerivastatin and omeprazole. Int J Clin Pharmacol Ther 1998; 36(10): 517–20.

    PubMed  CAS  Google Scholar 

  48. Bays HE, Dujovne CA. Drug interactions of lipid-altering drugs. Drug Saf 1998; 19(5): 355–71.

    Article  PubMed  CAS  Google Scholar 

  49. Mück W, Ochmann K, Rohde G, et al. Influence of erythromycin pre- and co-treatment on single-dose pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Eur J Clin Pharmacol 1998; 53: 469–73.

    Article  PubMed  Google Scholar 

  50. Mück W. Metabolic interactions between mibefradil and HMG-CoA reductase inhibitors: linking in vitro with in vivo information [letter]. Br J Clin Pharmacol 2000; 49: 87–90.

    PubMed  Google Scholar 

  51. Ikeda T, Ishigami M, Komai T, et al. Inhibition of hepatic cytochrome P450 isoform CYP3A by 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors [abstract]. Atherosclerosis 1997; 134(1/2): 135.

    Article  Google Scholar 

  52. Sachse R, Brendel E, Mück W, et al. Lack of drug-drug interaction between cerivastatin and nifedipine. Int J Clin Pharmacol Ther 1998; 36(8): 409–13.

    PubMed  CAS  Google Scholar 

  53. Weber P, Lettieri JT, Kaiser L, et al. Lack of mutual pharmacokinetic interaction between cerivastatin, a new HMG-CoA reductase inhibitor, and digoxin in healthy normocholesterolemic volunteers. Clin Ther 1999; 21(9): 1563–75.

    Article  PubMed  CAS  Google Scholar 

  54. Pogson GW, Kindren LH, Carper BG. Rhabdomyolysis and renal failure associated with cerivastatin-gemfibrozil combination therapy [letter]. Am J Cardiol 1999; 83: 1146.

    Article  PubMed  CAS  Google Scholar 

  55. Guyton JR, Dujavne CA, Illingworth DR. Dual hepatic metabolism of cerivastatin: clarifications [reply]. Am J Cardiol 1999; 84: 497.

    PubMed  CAS  Google Scholar 

  56. Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar? Pharmacol Ther 1998; 80(1): 1–34.

    Article  PubMed  CAS  Google Scholar 

  57. Mück W, Mai I, Fritzsche L, et al. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin Pharmacol Ther 1999; 65(3): 251–61.

    Article  PubMed  Google Scholar 

  58. Mück W. Cerivastatin: concept of microdoses and reduced interactions [abstract]. XIII Congress of the Italian Society for the Study of Atherosclerosis; 1999 Dec 3–5; Milan, 29.

  59. Davignon J, Hanefeld M, Nakaya N, et al. Clinical efficacy and safety of cerivastatin: summary of pivotal phase IIb/III studies. Am J Cardiol 1998; 82(4B): 32J–9J.

    Article  PubMed  CAS  Google Scholar 

  60. Stein E. Cerivastatin in primary hyperlipidemia: a multicenter analysis of efficacy and safety. Am J Cardiol 1998; 82(4B): 40J–6J.

    Article  PubMed  CAS  Google Scholar 

  61. Sirtori CR. Tissue selectivity of hydroxymethylglutaryl coenzyme A (HMG CoA) reductase inhibitors. Pharmacol Ther 1993; 60: 431–59.

    Article  PubMed  CAS  Google Scholar 

  62. Wu X, Whitfield LR, Stewart BH. P-glycoprotein-mediated apical secretion of atorvastatin in caco-2 cell monolayers [abstract]. Pharm Sci 1998; 1(1): S4492.

    Google Scholar 

  63. Kirchgessner TG, Zhu Y, Hsiang B. Interaction of HMG-CoA reductase inhibitors with members of the organic anion transporterfamily [abstract]. J Mol Cell Cardiol 1998; 30(6): A187.

    Google Scholar 

  64. Ohtawa M, Masuda N, Akasaka I, et al. Cellular uptake of fluvastatin, an inhibitor of HMG-CoA reductase, by rat cultured hepatocytes and human aortic endothelial cells. Br J Clin Pharmacol 1999; 47: 383–9.

    Article  PubMed  CAS  Google Scholar 

  65. Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 1998; 196(1): 26–37.

    Article  Google Scholar 

  66. Davignon J. The pleiotropic effects of drugs affecting lipid metabolism. In: Jacotot B, Mathe D, Fruchart JC, editors. Atherosclerosis XI (International Congress Series 1155). Singapore: Elsevier Science, 1998: 63–77.

    Google Scholar 

  67. White CM. Pharmacological effects of HMG-CoA reductase inhibitors other than lipoprotein modulation. J Clin Pharmacol 1999; 39(2): 111–8.

    Article  PubMed  CAS  Google Scholar 

  68. Desager JP, Horsmans Y. Clinical pharmacokinetics of 3-hydroxy-3methylglutaryl-coenzmye A reductase inhibitors. Clin Pharmacokinet 1996; 31(5): 348–71.

    Article  PubMed  CAS  Google Scholar 

  69. Lea AP, McTavish D. Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyperlipidemia. Drugs 1997; 53(5): 828–47.

    Article  PubMed  CAS  Google Scholar 

  70. Malinowski JM. Atorvastatin: a hydroxymethylglutaryl-coenzyme A reductase inhibitor. Am J Health Syst Pharm 1998; 55: 2253–67.

    PubMed  CAS  Google Scholar 

  71. Stern RH, Yang BB, Horton M, et al. Renal dysfunction does not alter the pharmacokinetics or LDL-cholesterol reduction of atorvastatin. J Clin Pharmacol 1997; 37: 816–9.

    PubMed  CAS  Google Scholar 

  72. Sirtori CR, Bondioli A, Murakami T. Microstatins: a new generation of potent cholesterol biosynthesis inhibitors with a reduced interaction potential. Focus on cerivastatin. Nutr Metab Cardiovasc Dis 1998; 8: 392–400.

    CAS  Google Scholar 

  73. Kantola T, Kari TK, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 646(1): 58–65.

    Article  Google Scholar 

  74. Donahue S, Lachman L, Norton J, et al. Mibefradil significantly increases serum concentrations of atorvastatin but not pravastatin [abstract]. Clin Pharmacol Ther 1999; 65(2): 179.

    Google Scholar 

  75. Neuvonen PJ, Lilja J, Kivistö KT. Grapefruit juice increases serum simvastatin and atorvastatin but not pravastatin [abstract]. Clin Pharmacol Ther 1999; 65(2): 180.

    Article  Google Scholar 

  76. Kivistü KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53.

    Article  Google Scholar 

  77. Aberg J, Eriksson U, Fager G. Effects of erythromycin on plasma fluvastatin levels: a pharmacokinetic study [abstract]. Atherosclerosis 1997; 134(1,2): 118.

    Article  Google Scholar 

  78. Welker HA, Wiltshire H, Bullingham R. Clinical pharmacokinetics of mibefradil. Clin Pharmacokinet 1998; 35(6): 405–23.

    Article  PubMed  CAS  Google Scholar 

  79. Bottorf MB, Behrens H, Gross A, et al. Differences in metabolism of lovastatin and pravastatin as assessed by CYP3A inhibition with erythromycin [abstract]. Pharmacotherapy 1997; 176(1): 184.

    Google Scholar 

  80. Kantola T, Kivistö KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63(4): 397–402.

    Article  PubMed  CAS  Google Scholar 

  81. Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not ‘inhibitor itraconazole. Clin Pharmacol Ther 1998; 63(3): 332–41.

    Article  PubMed  CAS  Google Scholar 

  82. Kantola T, Kivistö KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64(2): 177–82.

    Article  PubMed  CAS  Google Scholar 

  83. Lilja JJ, Kivistö KT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64(5): 477–83.

    Article  PubMed  CAS  Google Scholar 

  84. Renders L, Mayer-Kadner I, Koch C, et al. Cerivastatin and atorvastatin: efficacy, safety and drug-interaction of the new HMG-CoA reductase inhibitors in renal transplant recipients [abstract]. J Am Soc Nephrol 1998; 9: 694A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mück, W. Clinical Pharmacokinetics of Cerivastatin. Clin Pharmacokinet 39, 99–116 (2000). https://doi.org/10.2165/00003088-200039020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200039020-00002

Keywords

Navigation