Skip to main content
Log in

Pharmacokinetics of Quinine, Chloroquine and Amodiaquine

Clinical Implications

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Malaria is associated with a reduction in the systemic clearance and apparent volume of distribution of the cinchona alkaloids; this reduction is proportional to the disease severity. There is increased plasma protein binding, predominantly to α1-acid glycoprotein, and elimination half-lives (in healthy adults quinine t½z= 11 hours, quinidine t½z=8 hours) are prolonged by 50%. Systemic clearance is predominantly by hepatic biotransformation to more polar metabolites (quinine 80%, quinidine 65%) and the remaining drug is eliminated unchanged by the kidney. Quinine is well absorbed by mouth or following intramuscular injection even in severe cases of malaria (estimated bioavailability more than 85%). Quinine and chloroquine may cause potentially lethal hypotension if given by intravenous injection.

Chloroquine is extensively distributed with an enormous total apparent volume of distribution (Vd) more than 100 L/kg, and a terminal elimination half-life of 1 to 2 months. As a consequence, distribution rather than elimination processes determine the blood concentration profile of chloroquine in patients with acute malaria. Parenteral chloroquine should be given either by continuous intravenous infusion, or by frequent intramuscular or subcutaneous injections of relatively small doses. Oral bioavailability exceeds 75%. Amodiaquine is a pro-drug for the active antimalarial metabolite desethylamodiaquine. Its pharmacokinetic properties are similar to these of chloroquine although the Vd is smaller (17 to 34 L/kg) and the terminal elimination half-life is 1 to 3 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Loevinsohn M. Climatic warming and increased malaria incidence in Rwanda. Lancet 1994; 343: 714–8

    PubMed  CAS  Google Scholar 

  2. Sharma VP. Epidemiology and control of malaria. The Eighth Asian Congress of Pediatrics: 1994 Feb 6–11; New Delhi

  3. Schuster BG, Milhous WK. Reduced resources applied to antimalarial drug development. Parasitol Today 1993; 9: 167–8

    PubMed  CAS  Google Scholar 

  4. Alonso PL, Smith T, Armstrong Schellenberg JRM, et al. Randomised trial of efficacy of SPf66 vaccine against Plasmodium falciparum malaria in children in southern Tanzania. Lancet 1994; 344: 1175–81

    PubMed  CAS  Google Scholar 

  5. White NJ. Tough test for malaria vaccine. Lancet 1994; 344: 1172–3

    PubMed  CAS  Google Scholar 

  6. Maurice J. Malaria vaccine raises a dilemma. Science 1995; 267: 320–3

    PubMed  CAS  Google Scholar 

  7. Shepard DS, Ettling MB, Brinkman U, et al. The economic cost of malaria in Africa. Trop Med Parasitol 1991; 42: 199–203

    PubMed  CAS  Google Scholar 

  8. Foster SD. Pricing, distribution, and use of antimalarial drugs. Bull World Health Organ 1991; 69: 349–63

    PubMed  CAS  Google Scholar 

  9. Nosten F, Price RN. New antimalarials. A risk-benefit analysis. Drug Saf 1995; 12: 264–73

    PubMed  CAS  Google Scholar 

  10. White NJ. Antimalarial drug resistance: the pace quickens. J Antimicrob Chemother 1992; 30: 571–85

    PubMed  CAS  Google Scholar 

  11. Pukrittayakamee S, Supanaranond W, Looareesuwan S, et al. Quinine in severe falciparum malaria: evidence of declining efficacy. Trans R Soc Trop Med Hyg 1994; 88: 324–7

    PubMed  CAS  Google Scholar 

  12. White NJ. Clinical pharmacokinetics of antimalarial drugs. Clin Pharmacokinet 1985; 10: 187–215

    PubMed  CAS  Google Scholar 

  13. White NJ, Miller KD, Churchill FC, et al. Chloroquine treatment of severe malaria in children. N Engl J Med 1988; 319: 1493–500

    PubMed  CAS  Google Scholar 

  14. Davis TME, Supanaranond W, Pukrittayakamee S, et al. A safe and effective consecutive-infusion regimen for rapid quinine loading in severe malaria. J Infect Dis 1990; 161: 1305–8

    PubMed  CAS  Google Scholar 

  15. Edwards G, Winstanley PA, Ward SA. Clinical pharmacokinetics in the treatment of tropical disease. Clin Pharmacokinet 1994; 27: 150–65

    PubMed  CAS  Google Scholar 

  16. Winstanley PA, Watkins WM. Pharmacology and parasitology: integrating experimental methods and approaches to falciparum malaria. Br J Clin Pharmacol 1992; 33: 575–81

    PubMed  CAS  Google Scholar 

  17. White NJ. Drug treatment and prevention of malaria. Eur J Clin Pharmacol 1988; 34: 1–14

    PubMed  CAS  Google Scholar 

  18. White NJ, Krishna S. Treatment of malaria: some considerations and limitations of current methods of assessment. Trans R Soc Trop Med Hyg 1989; 83: 767–77

    PubMed  CAS  Google Scholar 

  19. White NJ. The clinical evaluation of antimalarial treatment response. Acta Leiden 1991; 60: 141–6

    PubMed  CAS  Google Scholar 

  20. White NJ. Antimalarial pharmacokinetics and treatment regimens. Br J Clin Pharmacol 1992; 34: 1–10

    PubMed  CAS  Google Scholar 

  21. White NJ, Nosten F. Advances in chemotherapy and prophylaxis of malaria. Curr Opin Infect Dis 1993; 6: 323–30

    Google Scholar 

  22. World Health Organization. Severe and complicated malaria. Trans R Soc Trop Med Hyg 1990; 84: 1–65

    Google Scholar 

  23. Wyler DJ. Malaria: overview and update. Clin Infect Dis 1993; 16: 449–58

    PubMed  CAS  Google Scholar 

  24. Peters W. Chemotherapy and drug resistance in malaria. 2nd ed. London: Academic Press, 1987: 1100

    Google Scholar 

  25. Milord F, Allard R, Gyorkos TW. Malaria chemoprophylaxis. Lancet 1993; 342: 502

    PubMed  CAS  Google Scholar 

  26. Meagher PD. Guidelines for malaria prophylaxis. Med J Aust 1994; 160: 45–6

    PubMed  CAS  Google Scholar 

  27. Krogstad DJ, Herwaldt BL, Schlesinger PH. Antimalarial agents: specific treatment regimens. Antimicrob Agents Chemother 1988; 32: 957–61

    PubMed  CAS  Google Scholar 

  28. Karbwang J, White NJ. Clinical importance of antimalarial pharmacokinetics. Asia Pac J Pharmacol 1988; 3: 181–9

    Google Scholar 

  29. Kain K. Antimalarial chemotherapy in the age of drug resistance. Curr Opin Infect Dis 1993; 6: 803–11

    Google Scholar 

  30. Gilles HM, Warrell DA. Bruce-Chwatt’s essential malariology. London: Edward Arnold, 1993: 340

    Google Scholar 

  31. Garner P, Brabin B. A review of randomized controlled trials of routine antimalarial drug prophylaxis during pregnancy in endemic malarious areas. Bull World Health Organ 1994; 72: 89–99

    PubMed  CAS  Google Scholar 

  32. Panisko DM, Keystone JS. Treatment of malaria: 1990. Drugs 1990; 39: 160–89

    PubMed  CAS  Google Scholar 

  33. Kozarsky PE, Lobel HO. Antimalarial agents: are we running out of options? Curr Sci 1994; 7: 701–7

    Google Scholar 

  34. Wernsdorfer WH, Payne D. The dynamics of drug resistance in Plasmodium falciparum. Pharmacol Ther 1991; 50: 95–121

    PubMed  CAS  Google Scholar 

  35. Wernsdorfer WH. The development and spread of drug-resistant malaria. Parasitol Today 1991; 7: 297–303

    PubMed  CAS  Google Scholar 

  36. Herwaldt BL, Krogtstad DJ, Schlesinger PH. Antimalarial agents: specific chemoprophylaxis regimens. Antimicrob Agents Chemother 1988; 32: 953–6

    PubMed  CAS  Google Scholar 

  37. Payne D. Did medicated salt hasten the spread of chloroquine resistance in Plasmodium falciparum? Parasitol Today 1988; 4: 112–5

    PubMed  CAS  Google Scholar 

  38. Bjorkman A, Phillips-Howard PA. The epidemiology of drug-resistant malaria. Trans R Soc Trop Med Hyg 1990; 84: 177–80

    PubMed  CAS  Google Scholar 

  39. Bjorkman A, Phillips-Howard PA. Drug-resistant malaria: mechanisms of development and inferences for malaria control. Trans R Soc Trop Med Hyg 1990; 84: 323–4

    PubMed  CAS  Google Scholar 

  40. Foote SJ, Cowman AF. The mode of action and the mechanism of resistance to antimalarial drugs. Acta Trop 1994; 56: 157–71

    PubMed  CAS  Google Scholar 

  41. Basco LK, Ruggeri C, Le Bras J. Molecules antipaludiques. Paris: Masson, 1993: 364

    Google Scholar 

  42. Whiting B, Kelman AW, Grevel J. Population pharmacokinetics. Theory and clinical application. Clin Pharmacokinet 1986; 11: 387–401

    PubMed  CAS  Google Scholar 

  43. Palmer KJ, Holliday SM, Brogden RN. Mefloquine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1993; 45: 430–75

    PubMed  CAS  Google Scholar 

  44. Bryson HM, Goa KL. Halofantrine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic potential. Drugs 1992; 43: 236–58

    PubMed  CAS  Google Scholar 

  45. Karle JM, Karle IL, Gerena L, et al. Stereochemical evaluation of the relative activities of the cinchona alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 1992; 36: 1538–44

    PubMed  CAS  Google Scholar 

  46. Yennawar MA, Viswamitra MA. Amodiaquine. Curr Sci 1991; 61: 39

    CAS  Google Scholar 

  47. Jarcho S. Quinine’s predecessor. In: Tosti F, editor. The early history of cinchona. The Henry E. Sigerist series in the history of medicine. Baltimore (MD): Johns Hopkins University Press, 1993: 354

    Google Scholar 

  48. Slater AFG. Chloroquine: mechanisms of drug action and resistance in Plasmodium falciparum. Pharmacol Ther 1993; 57: 203–35

    PubMed  CAS  Google Scholar 

  49. ter Kuile FO, White NJ, Holloway PA, et al. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of antimalarials used for the treatment of severe malaria. Exp Parasitol 1993; 76: 85–95

    PubMed  Google Scholar 

  50. Barnes DA, Foote SJ, Galatis D, et al. Selection for high-level chloroquine resistance results in deamplification of the pfmdr 1 gene and increased sensitivity to mefloquine in Plasmodium falciparum. EMBO J 1992; 11: 3067–75

    PubMed  CAS  Google Scholar 

  51. Oleksyn BJ, Suszko-Purzycka A, Dive G, et al. Molecular properties of Cinchona alkaloids: a theoretical approach. J Pharm Sci 1992; 81: 122–7

    PubMed  CAS  Google Scholar 

  52. Warhurst DC. Cinchona alkaloids and malaria. Acta Leiden 1987; 55: 53–64

    PubMed  CAS  Google Scholar 

  53. Druilhe P, Brandicourt O, Chongsuphajaisiddhi T, et al. Activity of a combination of three cinchona bark alkaloids against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 1988 Feb; 32: 250–4

    PubMed  CAS  Google Scholar 

  54. Wesche DL, Black J. A comparison of the antimalarial activity of the cinchona alkaloids against Plasmodium falciparum in vitro. J Trop Med Hyg 1990; 93: 153–9

    PubMed  CAS  Google Scholar 

  55. Dollery C. Therapeutic drugs. II. Edinburgh: Churchill-Livingstone, 1991: Q8–11

    Google Scholar 

  56. White NJ. The pharmacokinetics of quinine and quinidine in malaria. Acta Leiden 1987; 55: 65–76

    PubMed  CAS  Google Scholar 

  57. Mihaly GW, Ching MS, Klejn MB, et al. Differences in the binding of quinine and quinidine to plasma proteins. Br J Clin Pharmacol 1987; 24: 769–74

    PubMed  CAS  Google Scholar 

  58. Mberu EK, Ward SA, Winstanley PA, Watkins WM. Measurement of quinine in filter paper-absorbed blood by high-performance liquid chromatography. J Chromatogr 1991; 570: 180–4

    PubMed  CAS  Google Scholar 

  59. Silamut K, Hough R, Eggelte T, et al. Simple methods for assessing quinine pre-treatment in acute malaria. Trans R Soc Trop Med Hyg 1995; 89: 665–7

    PubMed  CAS  Google Scholar 

  60. Vozeh S, Bindscheler M, Huy-Riêm H, et al. Pharmacodynamics of 3-hydroxyquinidine alone and in combination with quinidine in healthy persons. Am J Cardiol 1987; 59: 681–4

    PubMed  CAS  Google Scholar 

  61. Kavanagh KM, Wyse G, Mitchell LB, et al. Contribution of quinidine metabolites to electrophysiologic responses in human subjects. Clin Pharmacol Ther 1989; 46: 352–8

    PubMed  CAS  Google Scholar 

  62. Berlin CM, Stackman JM, Vesell ES. Quinine-induced alterations in drug disposition. Clin Pharmacol Ther 1975 Dec; 18: 670–9

    PubMed  CAS  Google Scholar 

  63. Garnham JC, Raymond K, Shotton E, et al. The bioavailability of quinine. J Trop Med Hyg 1976; 32: 19–23

    Google Scholar 

  64. Trenholme GM, Williams RL, Rieckmann KH, et al. Quinine disposition during malaria and during induced fever. Clin Pharmacol Ther 1976; 19: 459–67

    PubMed  CAS  Google Scholar 

  65. Sabchareon A, Chongsuphajaisiddhi T, Attanath P. Serum quinine concentrations following the initial dose in children with falciparum malaria. Southeast Asian J Trop Med Public Health 1982; 13: 556–62

    PubMed  CAS  Google Scholar 

  66. White NJ, Looareesuwan S, Warrell DA, et al. Quinine pharmacokinetics and toxicity in cerebral and uncomplicated malaria. Am J Med 1982; 73: 564–72

    PubMed  CAS  Google Scholar 

  67. White NJ, Chantavanich P, Krishna S, et al. Quinine disposition kinetics. Br J Clin Pharmacol 1983; 16: 399–403

    PubMed  CAS  Google Scholar 

  68. Wanwimolruk S, Sunbhanich M, Pongmarutai M, et al. Effects of cimetidine and ranitidine on the pharmacokinetics of quinine. Br J Clin Pharmacol 1986; 22: 346–50

    PubMed  CAS  Google Scholar 

  69. Jamaludin A, Mohamad M, Navaratnam V, et al. Relative bioavailability of the hydrochloride, sulphate and ethyl carbonate salts of quinine. Br J Clin Pharmacol 1988 Feb; 25: 261–3

    PubMed  CAS  Google Scholar 

  70. Salako LA, Sowunmi A, Akinbami FO. Pharmacokinetics of quinine in African children suffering from kwashiorkor. Br J Clin Pharmacol 1989; 28: 197–201

    PubMed  CAS  Google Scholar 

  71. Wanwimolruk S, Chalcroft S. Lack of relationship between debrisoquine oxidation phenotype and the pharmacokinetics of quinine. Br J Clin Pharmacol 1991; 32: 617–20

    PubMed  CAS  Google Scholar 

  72. Wanwimolruk S, Chalcroft S, Coville PF, et al. Pharmacokinetics of quinine in young and elderly subjects. Trans R Soc Trop Med Hyg 1991; 85: 714–7

    PubMed  CAS  Google Scholar 

  73. Wanwimolruk S, Kaewvichit S, Tanthanyaphinant O, et al. Lack of effect of oral contraceptive use on the pharmacokinetics of quinine. Br J Clin Pharmacol 1991; 31: 179–81

    PubMed  CAS  Google Scholar 

  74. Salako LA, Sowunmi A. Disposition of quinine in plasma, red blood cells and saliva after oral and intravenous administration to healthy adult Africans. Eur J Clin Pharmacol 1992; 42: 171–4

    PubMed  CAS  Google Scholar 

  75. Paintaud G, Alvan G, Ericsson O. The reproducibility of quinine bioavailability. Br J Clin Pharmacol 1993; 35: 305–7

    PubMed  CAS  Google Scholar 

  76. Karbwang J, Davis TME, Looareesuwan S, et al. A comparison of the pharmacokinetic and pharmacodynamic properties of quinine and quinidine in healthy Thai males. Br J Clin Pharmacol 1993; 35: 265–71

    PubMed  CAS  Google Scholar 

  77. Wanwimolruk S, Wong SM, Coville PF, et al. Cigarette smoking enhances the elimination of quinine. Br J Clin Pharmacol 1993; 36: 610–4

    PubMed  CAS  Google Scholar 

  78. Karbwang J, Thanavibul A, Molunto P, et al. The pharmacokinetics of quinine in patients with hepatitis. Br J Clin Pharmacol 1993; 35: 444–6

    PubMed  CAS  Google Scholar 

  79. Dyer JR, Davis TME, Giele C, et al. The pharmacokinetics and pharmacodynamics of quinine in diabetic and non-diabetic elderly. Br J Clin Pharmacol 1994; 38: 205–12

    PubMed  CAS  Google Scholar 

  80. Hall AP, Czerwinski AW, Madonia EC, et al. Human plasma and urine quinine levels following tablets, capsules, and intravenous infusion. Clin Pharmacol Ther 1973; 14: 580–5

    PubMed  CAS  Google Scholar 

  81. Salem SAM, Stevenson IH. Absorption kinetics of aspirin and quinine in elderly subjects. Proceedings of the British Pharmacological Society: 1977 Mar 30–31; Br J Clin Pharmacol 1977; 397P

  82. Taggart JV, Earle DP, Berliner RW, et al. Studies on the chemotherapy of human malarias. III. The physiological disposition and antimalarial activity if the cinchona alkaloids. J Clin Invest 1948; 27: 80–6

    CAS  Google Scholar 

  83. Gonzales FJ, Idle JR. Pharmacogenetic phenotyping and genotyping. Clin Pharmacokinet 1994; 26: 59–70

    Google Scholar 

  84. Otton SV, Inaba T, Kalow W. Competitive inhibition of sparteine oxidation in human liver by β-adrenoceptor antagonists and other cardiovascular drugs. Life Sci 1984; 34: 73–80

    PubMed  CAS  Google Scholar 

  85. Halliday RC, Jones BC, Smith DA, et al. An investigation of the interaction between halofantrine, CYP2D6 and CYP3A4: studies with human liver microsomes and heterologous enzyme expression systems. Br J Clin Pharmacol 1995; 40: 369–78

    PubMed  CAS  Google Scholar 

  86. Nielsen MD, Brøsen K, Gram LF. A dose-effect study of the in vivo inhibitory effect of quinidine on sparteine oxidation in man. Br J Clin Pharmacol 1990; 29: 299–304

    PubMed  CAS  Google Scholar 

  87. Edwards DJ, Axelson JE, Visco JP, et al. Lack of effect of smoking on the metabolism and pharmacokinetics of quinidine in patients. Br J Clin Pharmacol 1987; 23: 351–4

    PubMed  CAS  Google Scholar 

  88. Oates NS, Fehe MD, Perry HE, et al. Influence of quinidine on nifedipine plasma phamacokinetics. Proceedings of the British Pharmacological Society; 1988 Jan 6–8: Br J Clin Pharmacol 1988; 675P

  89. Suphakawanich W, Thithapandha A. Inhibition of hepatic drug metabolism by quinine. Asia Pac J Pharmacol 1987; 2: 241–7

    CAS  Google Scholar 

  90. Munafo A, Reymond-Michel G, Biollaz J. Altered flecainide disposition in healthy volunteers taking quinine. Eur J Clin Pharmacol 1990; 38: 269–73

    PubMed  CAS  Google Scholar 

  91. Amabeoku GJ, Chikuni O, Akino C, et al. Pharmacokinetic interaction of single doses of quinine and carbemazepine, phenobarbitone and phenytoin in healthy volunteers. East Afr Med J 1993; 70: 90–3

    PubMed  CAS  Google Scholar 

  92. Spinier SA, Cheng JWM, Kindwall KE. Possible inhibition of hepatic metabolism of quinidine by erythromycin. Clin Pharmacol Ther 1995; 57: 89–94

    Google Scholar 

  93. Jaeger A, Saunder P, Kopferschmitt J, et al. Clinical features and management of poisoning to antimalarial drugs. Med Toxicol 1987; 2: 242–73

    CAS  Google Scholar 

  94. Lockey D, Bateman DN. The effect of oral activated charcoal on quinine elimination. Br J Clin Pharmacol 1989; 27: 92–4

    PubMed  CAS  Google Scholar 

  95. Hachfi-Soussi F, Coudert V, Biron R, et al. Intoxication aiguë à la quinine traitée par diazepam à forte dose. Arch Fr Paediatr 1993; 50: 485–8

    CAS  Google Scholar 

  96. Doering W, Wilkerson RD. Is there a clinically relevant interaction between quinine and digoxin in human beings? Am J Cardiol 1981; 48: 975–6

    PubMed  CAS  Google Scholar 

  97. Aronson J, Carver JG. The interaction of digoxin with quinine. Lancet 1981; I: 1418

    Google Scholar 

  98. Notterman DA, Drayer DE, Metakis L, et al. Stereoselective renal tubular secretion of quinidine and quinine. Clin Pharmacol Ther 1986 Nov; 40(5): 511–7

    PubMed  CAS  Google Scholar 

  99. White NJ, Looareesuwan S, Warrell DA. Quinine and quinidine: a comparison of EKG effects during the treatment of malaria. J Cardiovasc Pharmacol 1983; 5: 173–5

    PubMed  Google Scholar 

  100. Phillips RE, Warrell DA, White NJ, et al. Intravenous quinidine for the treatment of severe falciparum malaria. N Engl J Med 1985; 312: 1273–8

    PubMed  CAS  Google Scholar 

  101. Alvan G, Karlsson KK, Hellgren U, et al. Hearing impairment related to plasma quinine concentration in healthy volunteers. Br J Clin Pharmacol 1991; 31: 409–12

    PubMed  CAS  Google Scholar 

  102. Powell RD, McNamara JV. Quinine: side effects and plasma levels. Proc Helm Soc Wash 1972; 39: 331–8

    Google Scholar 

  103. Hall AP, Hanchalay S, Doberstyn E, et al. Quinine dosage and serum levels in falciparum malaria. Annual Report of SEATO Medical Research Laboratories. SEATO 1975; 241–50

  104. Shann F, Stace J, Edstein M. Pharmacokinetics of quinine in children. J Pediatr 1985; 106: 506–11

    PubMed  CAS  Google Scholar 

  105. Phillips RE, Looareesuwan S, White NJ, et al. Quinine pharmacokinetics and toxicity in pregnant and lactating women with falciparum malaria. Br J Clin Pharmacol 1986; 21: 677–83

    PubMed  CAS  Google Scholar 

  106. Wattanagoon Y, Phillips RE, Warrell DA, et al. Intramuscular loading dose of quinine for falciparum malaria: pharmacokietics and toxicity. BMJ 1986; 293: 11–3

    PubMed  CAS  Google Scholar 

  107. Davis TME, White NJ, Looareesuwan S, et al. Quinine pharmacokinetics in cerebral malaria: predicted plasma concentrations after rapid intravenous loading using a two-compartment model. Trans R Soc Trop Med Hyg 1988; 82: 542–7

    PubMed  CAS  Google Scholar 

  108. Waller D, Krishna S, Craddock CF, et al. The pharmacokinetic properties of intramuscular quinine in Gambian children with severe falciparum malaria. Trans R Soc Trop Med Hyg 1990; 84: 488–91

    PubMed  CAS  Google Scholar 

  109. Mansor SM, Taylor TE, McGrath CS, et al. The safety and kinetics of intramuscular quinine in Malawian children with moderately severe falciparum malaria. Trans R Soc Trop Med Hyg 1990; 84: 482–7

    PubMed  CAS  Google Scholar 

  110. Supanaranond W, Davis TME, Pukrittayakamee S, et al. Disposition of oral quinine in acute falciparum malaria. Eur J Clin Pharmacol 1991; 40: 49–52

    PubMed  CAS  Google Scholar 

  111. Pasvol G, Newton CRJC, Winstanley PA, et al. Quinine treatment of severe falciparum malaria in African children: a randomized comparison of three regimens. Am J Trop Med Hyg 1991; 45: 702–13

    PubMed  CAS  Google Scholar 

  112. Winstanley P, Newton C, Watkins W, et al. Towards optimal regimens of parenteral quinine for young African children with cerebral malaria: the importance of unbound quinine concentration. Trans R Soc Trop Med Hyg 1993; 87: 201–6

    PubMed  CAS  Google Scholar 

  113. Winstanley PA, Mberu EK, Watkins WM, et al. Towards optimal regimens of parenteral quinine for young African children with cerebral malaria: unbound quinine concentrations following a simple loading dose regimen. Trans R Soc Trop Med Hyg 1994; 88: 577–80

    PubMed  CAS  Google Scholar 

  114. Krishna S, Agbenyega T, Angus BJ, et al. Pharmacokinetics and pharmacodynamics of dichloroacetate in children with lactic acidosis due to severe malaria. Q J Med 1995; 88: 341–9

    CAS  Google Scholar 

  115. Barennes H, Kahiatani F, Pussard E, et al. Intrarectal Quinimax™ (an association of Cinchona alkaloids) for the treatment of Plasmodium falciparum malaria in children in Niger: efficacy and pharmacokinetics. Trans R Soc Trop Med Hyg 1995; 89: 418–21

    PubMed  CAS  Google Scholar 

  116. Silamut K, Molunto P, Ho M, et al. α1-acid glycoprotein (orosomucoid) and plasma protein binding of quinine in falciparum malaria. Br J Clin Pharmacol 1991; 32: 311–5

    PubMed  CAS  Google Scholar 

  117. Wanwimolruk S, Denton JR. Plasma protein binding of quinine: binding to human serum albumin, α1-acid glycoprotein and plasma from patients with malaria. J Pharm Pharmacol 1992; 44: 806–11

    PubMed  CAS  Google Scholar 

  118. Mansor SM, Molyneux ME, Taylor TE, et al. Effect of Plasmodium falciparum malaria infection on the plasma concentration of α1-acid glycoprotein and the binding of quinine in Malawian children. Br J Clin Pharmacol 1991; 32: 317–21

    PubMed  CAS  Google Scholar 

  119. Kwiatkowski D, Hill AVS, Sambou I, et al. TNF concentrations and disease severity in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 1990; 336: 1201–04

    PubMed  CAS  Google Scholar 

  120. Krishna S, Waller D, ter Kuile F, et al. Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. Trans R Soc Trop Med Hyg 1994; 88: 67–73

    PubMed  CAS  Google Scholar 

  121. Barnett JA, Brenner DE, Creaven PJ, et al. Lack of effect of treatment with human recombinant-tumour necrosis factor (HrTNF) on the binding of quinidine to α1-acid glycoprotein. Br J Clin Pharmacol 1989; 27: 257–61

    PubMed  CAS  Google Scholar 

  122. White NJ, Looareesuwan S, Silamut K. Red cell quinine concentrations in falciparum malaria. Am J Trop Med Hyg 1983; 32: 456–60

    PubMed  CAS  Google Scholar 

  123. Fremstad D, Jacobsen S. Binding of quinidine in serum and heart from normal and anuric rats, and the significance for distribution. Biochem Pharmacol 1979; 28: 2611–6

    PubMed  CAS  Google Scholar 

  124. Ceithaml Jr J, Evans EA. The biochemistry of the malaria parasite VII. In vitro studies on the distribution of quinine between blood cells and their suspending medium. Arch Biochem Biophys 1946; 30: 397–416

    Google Scholar 

  125. Benna JE, Pasquier C, Labro MT. Quinine uptake by human polymorphonuclear neutrophils. Antimicrob Agents Chemother 1991; 1991: 1474–8

    Google Scholar 

  126. Taylor TE, Borgstein A, Molyneux ME. Acid-base status in paediatric Plasmodium falciparum malaria. Q J Med 1993; 86: 99–109

    PubMed  CAS  Google Scholar 

  127. Supanaranond W, Davis TME, Pukrittayakamee S, et al. Abnormal circulatory control in falciparum malaria: the effects of antimalarial drugs. Eur J Clin Pharmacol 1993; 44: 325–9

    PubMed  CAS  Google Scholar 

  128. White NJ, Looareesuwan S, Warrell DA, et al. Quinine loading dose in cerebral malaria. Am J Trop Med Hyg 1983; 32: 1–5

    PubMed  CAS  Google Scholar 

  129. White NJ. Optimal regimens of parenteral quinine. Trans R Soc Trop Med Hyg 1995; 85: 462–3

    Google Scholar 

  130. Winstanley PA, Pasvol G, Marsh K. Quinine dose recommendations in childhood malaria: a reply. Trans R Soc Trop Med Hyg 1995; 89: 463–4

    Google Scholar 

  131. Mapaba E, Hellgren U, Landberg-Lindgren A, et al. Suscepibility of Plasmodium falciparum to quinine in vitro: effects of drug concentrations and time of exposure. Trans R Soc Trop Med Hyg 1995; 89: 85–9

    PubMed  CAS  Google Scholar 

  132. Fargier J-J, Louis FJ, Cot M, et al. Reduction of coma by quinine loading dose in falciparum cerebral malaria. Lancet 1991; 338: 896–7

    PubMed  CAS  Google Scholar 

  133. Bateman DN, Dyson EH. Quinine toxicity. Adverse Drug React Acute Poisoning Rev 1986; 4: 215–33

    Google Scholar 

  134. Waller D, Krishna S, Crawley J, et al. The outcome and course of severe malaria in Gambian children. Clin Infect Dis 1995; 21: 577–87

    PubMed  CAS  Google Scholar 

  135. White NJ, Warrell DA, Chantavanich P, et al. Severe hypoglycaemia and hyperinsulinaemia in falciparum malaria. N Engl J Med 1983; 309: 61–6

    PubMed  CAS  Google Scholar 

  136. Phillips RE, Looareesuwan S, White NJ, et al. Hypoglycaemia and antimalarial drugs: quinidine and release of insulin. BMJ 1986; 292: 1319–21

    PubMed  CAS  Google Scholar 

  137. Okitolonda W, Delacollette C, Malengreau M, et al. High incidence of hypoglycaemia in African patients treated with intravenous quinine. BMJ 1987; 295: 716–8

    PubMed  CAS  Google Scholar 

  138. Das BS, Satpathy SK, Mohanty D, et al. Hypoglycaemia in severe falciparum malaria. Trans R Soc Trop Med Hyg 1988; 82: 197–201

    PubMed  CAS  Google Scholar 

  139. Jones RG, Sue-Ling HM, Kear C, et al. Severe symptomatic hypoglycaemia due to quinine therapy. J R Soc Med 1986 Jul; 79(7): 426–8

    PubMed  CAS  Google Scholar 

  140. Davis TME, Looareesuwan S, Pukrittayakamee S, et al. Glucose turnover in severe falciparum malaria. Metabolism 1993; 42: 334–40

    PubMed  CAS  Google Scholar 

  141. Davis TME, Suputtamongkol Y, Spencer JL, et al. Glucose turnover in pregnant women with acute malaria. Clin Sci 1994; 86: 83–90

    PubMed  CAS  Google Scholar 

  142. White NJ, Miller KD, Marsh K, et al. Hypoglycaemia in African children with severe malaria. Lancet 1987; I: 708–11

    Google Scholar 

  143. Taylor TE, Molyneux ME, Wirima JJ, et al. Blood glucose levels in Malawian children before and during the administration of intravenous quinine for severe falciparum malaria. N Engl J Med 1988; 319: 1040–7

    PubMed  CAS  Google Scholar 

  144. White NJ. Pathophysiology. In: Strickland GT, editor. Clinics in tropical medicine and communicable diseases. London: Saunders, 1986: 55–90

    Google Scholar 

  145. Bateman DN, Blain PG, Woodhouse KW, et al. Pharmacokinetics and clinical toxicity of quinine overdosage: lack of efficacy of techniques intended to enhance elimination. Q J Med 1985; 214: 125–31

    Google Scholar 

  146. Luzzi GA, Peto TEA. Adverse effects of antimalarials: an update. Drug Saf 1993; 8: 295–311

    PubMed  CAS  Google Scholar 

  147. Chongsuphajaisiddhi T, Sabchareon A, Attanath P. Treatment of quinine resistant falciparum malaria in Thai children. Southeast Asian J Trop Med Public Health 1983; 14: 357–62

    PubMed  CAS  Google Scholar 

  148. Looareesuwan S, Phillips RE, White NJ, et al. Quinine and severe falciparum malaria in late pregnancy. Lancet 1985 Jul; II: 4–8

    Google Scholar 

  149. Davis TME, Spanaranond W, Pukrittayakamee S, et al. Glucose tolerance in pregnant patients with acute falciparum malaria. Trans R Soc Trop Med Hyg 1993; 87: 666–7

    PubMed  CAS  Google Scholar 

  150. Looareesuwan S, White NJ, Silamut K, et al. Quinine and severe falciparum malaria in late pregnancy. Acta Leiden 1987; 55: 115–20

    PubMed  CAS  Google Scholar 

  151. Looareesuwan S, Phillips RE, Karbwang J, et al. Plasmodium falciparum hyperparasitaemia: use of exchange transfusion in seven patients and a review of the literature. Q J Med 1990; 75: 471–81

    PubMed  CAS  Google Scholar 

  152. Sanders JP, Dawson WT. Efficacy of quinidine in malaria. JAMA 1932; 99: 1773–7

    Google Scholar 

  153. Miller KD, Greenberg AE, Campbell CC. Treatment of severe malaria in the United States with a continuous infusion of quinidine gluconate and exchange transfusion. N Engl J Med 1989; 321: 65–70

    PubMed  CAS  Google Scholar 

  154. Rudnitsky G, Miller KD, Padua T, et al. Continuous-infusion quinidine gluconate for treating children with severe Plasmodium falciparum malaria. J Infect Dis 1987; 155: 1040–3

    PubMed  CAS  Google Scholar 

  155. Bruce-Chwatt LJ. Chemotherapy of malaria. 2nd ed. Geneva: WHO, 1981: 260

    Google Scholar 

  156. Most H, London IM, Kane CA, et al. Chloroquine for treatment of acute attacks of vivax malaria. JAMA 1946; 131: 963–7

    CAS  Google Scholar 

  157. Pussard E, Verdier F. Antimalarial 4-aminoquinolines: mode of action and pharmacokinetics. Fundam Clin Pharmacol 1994; 8: 1–17

    PubMed  CAS  Google Scholar 

  158. Baird JK, Basri H, Purnomo, et al. Resistance to chloroquine by Plasmodium vivax in Irian Jaya, Indonesia. Am J Trop Med Hyg 1991; 44: 547–52

    PubMed  CAS  Google Scholar 

  159. Collignon P. Chloroquine resistance in Plasmodium vivax. J Infect Dis 1991; 164: 222–3

    PubMed  CAS  Google Scholar 

  160. Murphy GS, Basri H, Purnomo, et al. Vivax malaria resistant to treatment and prophylaxis with chloroquine. Lancet 1993; 341: 96–100

    PubMed  CAS  Google Scholar 

  161. Myat-Phone Kyaw, Myint Oo, Myint Lwin, et al. Emergence of chloroquine-resistant Plasmodium vivax in Myanmar (Burma). Trans R Soc Trop Med Hyg 1993 Nov–Dec; 87: 687

    Google Scholar 

  162. Rieckmann KH, Davis DR, Hutton DC. Plasmodium vivax resistance to chloroquine? Lancet 1989 Nov; II: 1183–4

    Google Scholar 

  163. Schuurkamp GJ, Spicer PE, Kereu RK, et al. Chloroquine-resistant Plasmodium vivax in Papua New Guinea. Trans R Soc Trop Med Hyg 1992; 86: 121–2

    PubMed  CAS  Google Scholar 

  164. Schwartz IK, Lackritz EM, Patchen LC. Chloroquine-resistant Plasmodium vivax from Indonesia. N Engl J Med 1991; 324: 927

    PubMed  CAS  Google Scholar 

  165. Thaithong S, Suebsaeng L, Rooney W, et al. Evidence of increased chloroquine sensitivity in Thai isolates of Plasmodium falciparum. Trans R Soc Trop Med Hyg 1988; 82: 37–8

    PubMed  CAS  Google Scholar 

  166. Wernsdorfer WH, Landgraf B, Wiedermann G, et al. Chloroquine resistance of Plasmodium falciparum: a biological advantage. Trans R Soc Trop Med Hyg 1995; 89: 90–2

    PubMed  CAS  Google Scholar 

  167. Fink vE, Minet G, Nickel P. Chloroquin-Enantiomere. Arzneimittel Forschung 1979; 29: 163–4

    PubMed  CAS  Google Scholar 

  168. Fu S, Bjorkman A, Wahlin B, et al. In vitro activity of chloroquine, the enantiomers of chloroquine, desethylchloroquine and pyronaidine against Plasmodiuum falciparum. Br J Clin Pharmacol 1986; 22: 93–6

    PubMed  CAS  Google Scholar 

  169. Aderounmu FA. In vitro assessment of the antimalarial activity of chloroquine and its major metabolites. Ann Trop Med Parasitol 1984; 78: 581–5

    PubMed  CAS  Google Scholar 

  170. Verdier F, Le Bras J, Clavier, et al. Blood levels and in vitro activity of desethylchloroquine against Plasmodium falciparum [letter]. Lancet 1984 May 26; I: 1186–7

    Google Scholar 

  171. Slater AFG, Cerami A. Inhibition by chloroquine of a novel haem polymerase activity in malaria trophozoites. Nature 1992; 355: 167–9

    PubMed  CAS  Google Scholar 

  172. Chou AC, Fitch CD. Heme polymerase: modulation by chloroquine treatment of a rodent malaria. Life Sci 1992; 51: 2073–8

    PubMed  CAS  Google Scholar 

  173. Dorn A, Stoffel R, Matile H, et al. Malaria haemozoin/b-haematin supports haem polymerization in the absence of protein. Nature 1995; 374: 269–71

    PubMed  CAS  Google Scholar 

  174. Blauer G, Akkawi M. B-hematin. Biochem Mol Biol Int 1995; 35: 231–5

    PubMed  CAS  Google Scholar 

  175. Francis SE, Gluzman IY, Oksman A, et al. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 1994; 13: 306–17

    PubMed  CAS  Google Scholar 

  176. Gluzman IY, Francis SE, Oksman A, et al. Order and specificity of the Plasmodium falciparum hemoglobin degredation pathway. J Clin Invest 1994; 93: 1602–8

    PubMed  CAS  Google Scholar 

  177. Yayon A, Cabantchik ZI, Ginsburg H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc Natl Acad Sci USA 1985; 82: 2784–8

    PubMed  CAS  Google Scholar 

  178. Krogstad DJ, Schlesinger PH, Gluzman IY. The specificity of chloroquine. Parasitol Today 1992; 8: 183–4

    PubMed  CAS  Google Scholar 

  179. Odoula AMJ, Moyou-Somo RS, Kyle DE, et al. Chloroquine resistant Plasmodium falciparum in indigenous residents of Cameroon. Trans R Soc Trop Med Hyg 1989; 83: 308–10

    Google Scholar 

  180. Boulter MK, Bray PG, Howells RE, et al. The potential of desipramine to reverse chloroquine resistance of Plasmodium falciparum is reduced by its binding to plasma protein. Trans R Soc Trop Med Hyg 1993; 87: 303

    PubMed  CAS  Google Scholar 

  181. Warsame M, Wernsdorfer WH, Bjorkman A. Lack of effect of desipramine on the response to chloroquine of patients with chloroquine-resistant falciparum malaria. Trans R Soc Trop Med Hyg 1992; 86: 235–6

    PubMed  CAS  Google Scholar 

  182. Wellems TE. Molecular genetics of drug resistance in Plasmodium falciparum malaria. Parasitol Today 1991; 7: 110–2

    PubMed  CAS  Google Scholar 

  183. Kwiatkowski D, Bate C. Inhibition of tumour necrosis factor (TNF) production by antimalarial drugs used in cerebral malaria. Trans R Soc Trop Med Hyg 1995; 89: 215–6

    PubMed  CAS  Google Scholar 

  184. Picot S, Peyron F, Donadille A, et al. Chloroquine-induced inhibition of the production of TNF, but not of IL-6, is affected by disruption of iron metabolism. Immunology 1993; 80: 127–33

    PubMed  CAS  Google Scholar 

  185. Yayon A. The antimalarial mode of action of chloroquine. Rev Clin Basic Pharmacol 1985; 6: 99–139

    Google Scholar 

  186. Titus EO. Recent developments in the understanding of the pharmacokinetics and mechanism of action of chloroquine. Ther Drug Monit 1989; 11: 369–79

    PubMed  CAS  Google Scholar 

  187. Smith GD, Amos TAS, Mahler R, et al. Effect of chloroquine on insulin and glucose homeostasis in normal subjects and patients with non-insuline-dependent diabetes mellitus. BMJ 1987; 294: 465–7

    PubMed  CAS  Google Scholar 

  188. Asamoah KA, Robb DA, Furman BL. Chronic chloroquine treament enhances insulin release in rats. Diabetes Res Clin Pract 1990; 9: 273–8

    PubMed  CAS  Google Scholar 

  189. Patchen LC, Mount DL, Schwartz IK, et al. Analysis of filter-paper-absorbed, finger-stick blood samples for chloroquine and its major metabolite using high performance liquid chromatography with fluorescence detection. J Chromatogr 1983; 278: 81–9

    PubMed  CAS  Google Scholar 

  190. Berqvist Y, Domeij-Nyberg B. Distribution of chloroquine and its metabolite desethylchloroquine in human blood cells and its implications for the quatitative determination of these compounds in serum and plasma. J Chromatogr 1983; 221: 119–27

    Google Scholar 

  191. Geary TG, Akood MA, Jensen JB. Characteristics of chloroquine binding to glass and plastic. Am J Trop Med Hyg 1983; 32: 19–23

    PubMed  CAS  Google Scholar 

  192. Ajayi F, Salako LA, Kuye JO. Comparison of the partitioning in vitro of chloroquine and its desethylmetabolites between the erythrocytes and plasma of healthy subjects and those with malaria. Afr J Med Sci 1989; 18: 95–100

    CAS  Google Scholar 

  193. Ofori-Adjei D, Ericsson O, Lindstrom B, et al. Protein binding of chloroquine enantiomers and desethylchloroquine. Br J Clin Pharmacol 1986; 22: 356–8

    PubMed  CAS  Google Scholar 

  194. Edwards G, Looareewuwan S, Davies AJ, et al. Pharmacokinetics of chloroquine in Thais: plasma and red-cell concentrations following an intravenous infusion to healthy subjects with Plasmodium vivax malaria. Br J Clin Pharmacol 1988; 22: 477–85

    Google Scholar 

  195. McChesney EW, Fasco MJ, Banks WF. The metabolism of chloroquine in man during and after repeated oral dosage. J Pharmacol Exp Ther 1967; 158: 323–31

    PubMed  CAS  Google Scholar 

  196. Frisk-Holmberg M, Bergkvist Y, Domeij-Nyberg B, et al. Chloroquine serum concentration and side effects: evidence for dose dependent kinetics. Clin Pharmacol Ther 1979; 25: 345–50

    PubMed  CAS  Google Scholar 

  197. Gustaffson LL, Rombo L, Alvan G, et al. On the question of dose-dependent chloroquine elimination of a single dose. Clin Pharmacol Ther 1983; 34: 383–5

    Google Scholar 

  198. Gustafsson LL, Walker O, Alvan G, et al. Disposition of chloroquine in man after single intravenous and oral dose. Br J Clin Pharmacol 1983; 15: 471–9

    PubMed  CAS  Google Scholar 

  199. Tulpule A, Krishnaswamy K. Chloroquine kinetics in the undernourished. Eur J Clin Pharmacol 1983; 19: 273–6

    Google Scholar 

  200. Frisk-Holmberg M, Berqvist Y, Termond E, et al. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur J Clin Pharmacol 1984; 26: 521–30

    PubMed  CAS  Google Scholar 

  201. Salako LA, Walker O, Iyun AO. Pharmacokinetics of chloroquine in renal insufficiency. Afr J Med Med Sci 1984; 13: 177–82

    PubMed  CAS  Google Scholar 

  202. Looareesuwan S, White NJ, Chantavanich P, et al. Cardiovascular toxicity and distribution kinetics of intravenous chloroquine. Br J Clin Pharmacol 1986; 22: 31–6

    PubMed  CAS  Google Scholar 

  203. Aderounmu AF, Salako LA, Lindstrom B, et al. Comparison of the pharmacokinetics of chloroquine after single intravenous and intramuscular administration in healthy Africans. Br J Clin Pharmacol 1986; 22: 559–64

    PubMed  CAS  Google Scholar 

  204. Rombo L, Bergquist Y, Hellgren U. Chloroquine and desethylchloroquine concentrations during regular long-term malaria prophyaxis. Bull World Health Organ 1987; 65: 879–83

    PubMed  CAS  Google Scholar 

  205. Gustafsson LL, Lindstrom B, Grahnen A, et al. Chloroquine excretion following malaria prophylaxis. Br J Clin Pharmacol 1987; 24: 221–4

    PubMed  CAS  Google Scholar 

  206. Walker O, Salako LA, Alvan G, et al. The disposition of chloroquine in healthy Nigerians after single intravenous and oral doses. Br J Clin Pharmacol 1987; 23: 295–301

    PubMed  CAS  Google Scholar 

  207. Walker O, Dawodu AH, Salako LA, et al. Single dose disposition of chloroquine in kwashiorkor and normal children-evidence for decreased absorption in kwashiorkor. Br J Clin Pharmacol 1987; 23: 467–72

    PubMed  CAS  Google Scholar 

  208. Salako LA, Aderounmo AF, Walker O. Influence of route of administration on the pharmacokinetics of chloroquine and desethylchloroquine. Bull World Health Organ 1987; 39: 696–9

    Google Scholar 

  209. Tett SE, Cutler DJ, Day RO, et al. Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br J Clin Pharmacol 1989; 27: 771–9

    PubMed  CAS  Google Scholar 

  210. Essien EE, Ette EI, Thomas WOA, et al. Chloroquine disposition in hypersensitive and non-hypersensitive subjects and its significance in chloroquine-induced pruritus. Eur J Drug Metab Pharmacokinet 1989; 14: 71–7

    PubMed  CAS  Google Scholar 

  211. Verdier F, Pussard E, Clavier F, et al. Pharmacokinetics of intramuscular amopyroquin in healthy subjects and determination of a therapeutic regimen for Plasmodium falciparum. Antimicrob Agents Chemother 1989; 33: 316–21

    PubMed  CAS  Google Scholar 

  212. Minker E, Ivan J. Experimental and clinicopharmacological study of rectal absorption of chloroquine. Acta Physiol Hung 1991; 77: 237–48

    PubMed  CAS  Google Scholar 

  213. Augustijns P, Verbeke N. Stereoselective pharmacokinetic propoerties of chloroquine and de-ethyl-chloroquine in humans. Clin Pharmacokinet 1993; 24: 259–69

    PubMed  CAS  Google Scholar 

  214. Na Bangchang K, Limpaibul L, Thanavibul A, et al. The pharmacokinetics of chloroquine in healthy Thai subjects and patients with Plasmodium vivax malaria. Br J Clin Pharmacol 1994; 38: 278–81

    Google Scholar 

  215. Wetsteyn JCFM, de Vries PJ, Oosterhuis B, et al. The pharmacokinetics of three multiple dose regimens of chloroquine: implications for malaria chemoprophylaxis. Br J Clin Pharmacol 1995; 39: 696–9

    PubMed  CAS  Google Scholar 

  216. Winstanley P, Edwards G, Orme M, et al. The disposition of amodiaquine in man after oral administration. Br J Clin Pharmacol 1987; 23: 1–7

    PubMed  CAS  Google Scholar 

  217. White NJ, Looareesuwan S, Edwards G, et al. Pharmacokinetics of intravenous amodiaquine. Br J Clin Pharmacol 1987; 23: 127–35

    PubMed  CAS  Google Scholar 

  218. Pussard E, Verdier F, Faurisson F, et al. Disposition of monodesethylamodiaquine after a singel oral dose of amodiaquine and three regimens for prophylaxis against Plasmodium falciparum. Eur J Clin Pharmacol 1987; 33: 409–14

    PubMed  CAS  Google Scholar 

  219. Tett SE, Cutter DJ. Apparent dose dependence of chloroquine pharmacokinetics due to limited assay sensitivity and short sampling times. Eur J Clin Pharmacol 1987; 31: 729–31

    PubMed  CAS  Google Scholar 

  220. Tjoeng MM, Hogeman PHG, Kapelle H, et al. Comparative bioavailability of rectal and oral formulations of chloroquine. Pharm Weekbl Sci 1991; 13: 176–8

    PubMed  CAS  Google Scholar 

  221. Ette EI, Essien EE, Brown-Awala EE. Pharmacokinetics of chloroquine: saliva and plasma levels relationship. Eur J Drug Metab Pharmacokinet 1986; 11: 275–81

    PubMed  CAS  Google Scholar 

  222. Ogubona FA, Lawal AA, Onyeji CO. Saliva secretion of chloroquine in man. J Pharm Pharmacol 1986; 38: 535–7

    PubMed  CAS  Google Scholar 

  223. Ofori-Adjei D, Ericsson O, Lindstrom B, et al. Enatioselective analysis of chloroquine and desethylchloroquine after oral administration of racemic chloroquine. Ther Drug Monit 1986; 8: 457–61

    PubMed  CAS  Google Scholar 

  224. Gustafsson LL, Nordmark B, Ericsson O, et al. The pharmacokinetics of (+) and (−) chloroquine in patients with rheumatoid arthritis. Proceedings of the Third World Congress on Clinical Pharmacology and Therapeutics: 1986 Jul; Stockholm

  225. Hellgren U, Alvan G, Jerling M. On the question of interindividual variations in chloroquine concentrations. Eur J Clin Pharmacol 1993; 45: 383–5

    PubMed  CAS  Google Scholar 

  226. Hellgren U, Kihamia CM, Mahikwano LF, et al. Response of Plasmodium falciparum to chloroquine treatment: relation to whole blood concentrations of chloroquine and desethylchloroquine. Bull World Health Organ 1989; 67: 197–202

    PubMed  CAS  Google Scholar 

  227. Neuvonen PJ, Kivisto KT, Pyykko K. Prevention of chloroquine absorption by activated charcoal. Human Exp Toxicol 1992 Mar; 11: 117–20

    CAS  Google Scholar 

  228. Mahmoud BM, Ali HM, Homeida MMA, et al. Significant reduction in chloroquine bioavailability following coadministration with the Sudanese beverages Aradaib, Karkadi and lemon. J Antimicrob Chemother 1994; 33: 1005–9

    PubMed  CAS  Google Scholar 

  229. Lancaster DL, Adio RA, Tai KK, et al. Inhibition of metoprolol metabolism by chloroquine and other antimalarial drugs. J Pharm Pharmacol 1990; 42: 267–71

    PubMed  CAS  Google Scholar 

  230. Bustos MDG, Gay F, Diquet B, et al. The pharmacokinetics and electrocardiographic effects of chloroquine in healthy subjects. Trop Med Parasitol 1994; 45: 83–6

    PubMed  CAS  Google Scholar 

  231. Koudogbo B, Asseko MC, Mbina CN, et al. Mode d’action antidotique du diazepam dans le traitment des intoxications a la chloroquine. J Toxicol Clin Exp 1986; 6: 307–12

    PubMed  CAS  Google Scholar 

  232. Riou B, Barriot P, Rimailho A, et al. Treatment of severe chloroquine poisoning. N Engl J Med 1988; 318: 1–6

    PubMed  CAS  Google Scholar 

  233. Bhasin DK, Chhina RS, Sachdeva JR. Endoscopic assessment of chloroquine phosphate-induced damage to esophageal, gastric, and duodenal mucosa. Am J Gastroenterol 1991; 86: 434–7

    PubMed  CAS  Google Scholar 

  234. Ekpechi OL, Okoro AN. A pattern of pruritus due to chloroquine. Arch Dermatol 1964; 89: 631–2

    PubMed  CAS  Google Scholar 

  235. Ajayi AA, Oluokun A, Sofowora O, et al. Epidemiology of antimalarial-induced pruritus in Africans. Eur J Clin Pharmacol 1989; 37: 539–40

    PubMed  CAS  Google Scholar 

  236. Abila B, Ikueze R. Effects of clemastine, ketotifen and prednisolone on chloroquine-induced pruritus. J Trop Med Hyg 1989; 92: 356–9

    PubMed  CAS  Google Scholar 

  237. Ajayi AA, Akinleye AO, Udoh SJ, et al. The effects of prednisolone and niacin on chloroquine-induced pruritus in malaria. Eur J Clin Pharmacol 1991; 41: 383–5

    PubMed  CAS  Google Scholar 

  238. Ezeamuzie IC, Igbigbi PS, Ambakederemo AW, et al. Halofantrine-induced pruritus amongst subjects who itch to chlorquine. J Trop Med Hyg 1991; 94: 184–8

    PubMed  CAS  Google Scholar 

  239. Easterbrook M. Ocular effects and safety of antimalarial agents. Am J Med 1988; 85 Suppl. 4A: 23–9

    PubMed  CAS  Google Scholar 

  240. Tuffanelli D, Abraham RK, Dubois El. Pigmentation from antimalarial therapy. Arch Dermatol 1963; 88: 113–20

    Google Scholar 

  241. Lange WR, Frankenfield DL, Moriarty-Sheehan M, et al. No evidence for chloroquine-associated retinopathy among missionaries on long-term malaria chemoprophylaxis. Am J Trop Med Hyg 1994; 51: 389–92

    PubMed  CAS  Google Scholar 

  242. Adelusi SA, Dawodu AH, Salako LA. Kinetics of the uptake and elimination of chloroquine in children with malaria. Br J Clin Pharmacol 1982; 14: 483–7

    PubMed  CAS  Google Scholar 

  243. Walker O, Birkett DJ, Alvan D, et al. Characterisation of chloroquine plasma protein binding in man. Br J Clin Pharmacol 1983; 15: 375–7

    PubMed  CAS  Google Scholar 

  244. Phillips RE, Warrell DA, Edwards G, et al. Divided dose intramuscular regimen and single dose subcutaneous regimen for chloroquine: plasma concentrations and toxicity in patients with malaria. BMJ 1986; 293: 13–6

    PubMed  CAS  Google Scholar 

  245. White NJ, Watt G, Bergqvist Y, et al. Parenteral chloroquine for treating falciparum malaria. J Infect Dis 1987; 155: 192–201

    PubMed  CAS  Google Scholar 

  246. Winstanley PA, Simooya O, Kofi-Ekue JM, et al. The disposition of amodiaquine in Zambians and Nigerians with malaria. Br J Clin Pharmacol 1990; 29: 695–701

    PubMed  CAS  Google Scholar 

  247. Pussard E, Lepers JP, Clavier F, et al. Efficacy of a loading dose of oral chloroquine in a 36-hour treatment schedule for uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 1991; 35: 406–9

    PubMed  CAS  Google Scholar 

  248. Bioland PB, Lackritz EM, Kazembe PN, et al. Beyond chloroquine: implications of drug resistance for evaluating malaria therapy efficacy and treatment policy in Africa. J Infect Dis 1993; 167: 932–7

    Google Scholar 

  249. Sudre P, Breman JG, McFarland D, et al. Treatment of chloroquine-resistant malaria in African children: a cost-effectiveness analysis. International J Epidemiol 1992; 21: 146–54

    CAS  Google Scholar 

  250. Peeters PAM, Huiskamp CWEM, Eling WMC, et al. Chloroquine containing liposomes in the chemotherapy of murine malaria. Parasitology 1989; 98: 381–6

    PubMed  CAS  Google Scholar 

  251. White NJ, Krishna S, Waller D, et al. Open comparison of intramuscular chloroquine and quinine in children with severe chloroquine-sensitive falciparum malaria. Lancet 1988; II: 1313–5

    Google Scholar 

  252. Essien EE, Afamefuna GC. Chloroquine and its metabolites in human cord blood, neonatal blood and urine after maternal medication. Clin Chem 1982; 28: 1148–52

    PubMed  CAS  Google Scholar 

  253. Parke A. Antimalarial drugs and pregnancy. Am J Med 1988; 85: 30–3

    PubMed  CAS  Google Scholar 

  254. Edstein MD, Veenendaal JR, Newmank K, et al. Chloroquine, dapsone and pyrimethamine in human milk. Br J Clin Pharmacol 1986; 22: 722–35

    Google Scholar 

  255. Ogubona FA, Onyeji CO, Bolaji OO, et al. Excretion of chloroquine and desethylchloroquine in human milk. Br J Clin Pharmacol 1987; 23: 473–6

    Google Scholar 

  256. Larrey DAC, Pessayre D, et al. Amodiaquine-induced hepatitis. A report of seven cases. Ann Intern Med 1986; 104: 801–3

    PubMed  CAS  Google Scholar 

  257. Hatton C, Peto T, Bunch C, et al. Frequency of severe neutropenia associated with amodiaquine prophylaxis against malaria. Lancet 1986; I: 411–4

    Google Scholar 

  258. Winstanley P, Coleman JW, Maggs JL, et al. The toxicity of amodiaquine and its principle metabolites towards mononuclear leucocytes and granulocyte/monocyte colony forming units. Br J Clin Pharmacol 1990; 29: 479–85

    PubMed  CAS  Google Scholar 

  259. Fadat G, Le Bras J, Hengy, et al. Efficacy of amodiaquine against chloroquine-resistant malaria in Cameroon. Lancet 1991; 338: 1092

    PubMed  CAS  Google Scholar 

  260. Nevill CA, Verhoef FH, Munafu CG, et al. A comparison of amodiaquine and chloroquine in the treatment therapy of falciparum malaria in Kenya. East Afr Med J 1994; 71: 167–70

    PubMed  CAS  Google Scholar 

  261. Basco LK. Inefficacy of amodiaquine against chloroquine-resistant malaria. Lancet 1991; 338: 1460

    PubMed  CAS  Google Scholar 

  262. Basco LK, Le Bras J. In vitro activity of monodesethylamo-diaquine and amopyroquine against African isolates and clones of Plasmodium falciparum. Am J Trop Med Hyg 1993; 48: 120–5

    PubMed  CAS  Google Scholar 

  263. Hoekenga MT. Intramuscular amopyroquin for acute malaria. Am J Trop Med Hyg 1962; 11: 1–5

    PubMed  CAS  Google Scholar 

  264. Gaudebout C, Pussard E, Clavier F, et al. Efficacy of intramuscular amopyroquin for treatment of Plasmodium falciparum malaria in the Gabon Republic. Antimicrob Agents Chemother 1993; 37: 970–4

    PubMed  CAS  Google Scholar 

  265. Lobel HO, Miani M, Eng T, et al. Long-term malaria prophylaxis with weekly mefloquine. Lancet 1993; 341: 848–51

    PubMed  CAS  Google Scholar 

  266. Steffen R, Fuchs E, Schildknecht J, et al. Mefloquine compared with other malaria chemoprophylactic regimens in tourists visiting East Africa. Lancet 1993; 341: 1299–303

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna, S., White, N.J. Pharmacokinetics of Quinine, Chloroquine and Amodiaquine. Clin-Pharmacokinet 30, 263–299 (1996). https://doi.org/10.2165/00003088-199630040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199630040-00002

Keywords

Navigation