Skip to main content
Log in

Adverse Gastrointestinal Effects of Mycophenolate Mofetil

Aetiology, Incidence and Management

Drug Safety Aims and scope Submit manuscript

Abstract

Mycophenolate mofetil (MMF) is a relatively new immunosuppressive drug. It inhibits inosine monophosphate dehydrogenase, a key enzyme in the de novo pathway of purine synthesis, and thus causes lymphocyte-selective immunosuppression. Large clinical trials have revealed the efficacy of MMF in the prevention of allograft rejection when administered together with cyclosporin or tacrolimus and corticosteroids.

Although the adverse effect profile of MMF is comparatively benign, gastrointestinal adverse effects are a major concern. These effects are partially explained by the increased immune suppression, by the mode of action and by interactions, particularly with other immunosuppressants. The aetiology of the rarest gastrointestinal adverse effects is still not completely clear. Therapy depends upon the clinical gravity of the adverse effects and is therefore a case of waiting and observing. An adjustment of dosage of immunosuppressants according to the clinical situation and, particularly in the case of MMF, spreading the total dosage over more than 2 daily doses are often sufficient. Should adverse effects persist for a longer period of time and be of a more serious nature, a comprehensive invasive diagnostic process is necessary, including endoscopy and biopsy and the search for opportunistic infections. In this case, dosage reduction or the complete withdrawal of MMF seems to be unavoidable.

Severe gastrointestinal complications with MMF are rare, but when they do occur they may require extensive diagnosis and treatment. In the future, therapeutic drug monitoring and, where necessary, pharmacological modifications of MMF could lead to a further reduction of adverse effects with an equal or even increased efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

References

  1. Koyama H, Cecka JM. Rejection episodes. Clin Transpl 1992; 391–404

    Google Scholar 

  2. Kliem V, Eberhard OK, Oldhafer K, et al. FK 506 in the treatment of steroid- and OKT3-resistant rejection in renal transplant recipients: reduced dosage and anti-infective prophylaxis. Transplant Proc 1996; 28(6): 3166–8

    PubMed  CAS  Google Scholar 

  3. Allison AC, Eugui EM. The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin Immunopathol 1993; 14(4): 353–80

    Article  PubMed  CAS  Google Scholar 

  4. Sollinger HW. Mycophenolate mofetil. Kidney Int Suppl 1995; 52: S14–7

    PubMed  CAS  Google Scholar 

  5. Platz KP, Sollinger HW, Hullett DA, et al. RS-61443 - a new, potent immunosuppressive agent. Transplantation 1991; 51(1): 27–31

    Article  PubMed  CAS  Google Scholar 

  6. Fulton B, Markham A. Mycophenolate mofetil: a review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs 1996; 51(2): 278–98

    Article  PubMed  CAS  Google Scholar 

  7. Behrend M. Mycophenolate mofetil: suggested guidelines for use in kidney transplantation. BioDrugs 2001; 15(1): 37–53

    Article  PubMed  CAS  Google Scholar 

  8. Franklin TJ, Cook JM. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem J 1969; 113: 515–24

    PubMed  CAS  Google Scholar 

  9. Gosio B. Richerche batterilogische e chimiche sulle alterazióni del mais. Riv Ig Sanita Pubblica Ann 1896; 7: 825–49

    Google Scholar 

  10. Giblett ER, Ammann AJ, Wara DW, et al. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1975; I(7914): 1010–3

    Article  Google Scholar 

  11. Allison AC, Hovi T, Watts RW, et al. Immunological observations on patients with Lesch-Nyhan syndrome, and on the role of de-novo purine synthesis in lymphocyte transformation. Lancet 1975; II(7946): 1179–83

    Article  Google Scholar 

  12. Sanquer S, Breil M, Baron C, et al. Trough blood concentrations in long-term treatment with mycophenolate mofetil [letter]. Lancet 1998; 351(9115): 1557

    Article  PubMed  CAS  Google Scholar 

  13. Allison AC, Eugui EM. Mycophenolate mofetil, a rationally designed immunosuppressive drug. Clin Transplant 1993; 7: 96–112

    Google Scholar 

  14. Allison AC, Eugui EM. Preferential suppression of lymphocyte proliferation by mycophenolic acid and predicted long-term effects of mycophenolate mofetil in transplantation. Transplant Proc 1994; 26(6): 3205–10

    PubMed  CAS  Google Scholar 

  15. Natsumeda Y, Carr SF. Human type I and II IMP dehydrogenases as drug targets. Ann N Y Acad Sci 1993; 696: 88–93

    Article  PubMed  CAS  Google Scholar 

  16. Zimmermann AG, Gu JJ, Laliberte J, et al. Inosine-5′-monophosphate dehydrogenase: regulation of expression and role in cellular proliferation and T lymphocyte activation. Prog Nucleic Acid Res Mol Biol 1998; 61: 181–209

    Article  PubMed  CAS  Google Scholar 

  17. Schutz E, Shipkova M, Armstrong VW, et al. Therapeutic drug monitoring of mycophenolic acid: comparison of HPLC and immunoassay reveals new MPA metabolites. Transplant Proc 1998; 30(4): 1185–7

    Article  PubMed  CAS  Google Scholar 

  18. Schutz E, Shipkova M, Armstrong VW, et al. Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Clin Chem 1999; 45(3): 419–22

    PubMed  CAS  Google Scholar 

  19. Sollinger HW, Deierhoi MH, Belzer FO, et al. RS-61443 - a phase I clinical trial and pilot rescue study. Transplantation 1992; 53(2): 428–32

    Article  PubMed  CAS  Google Scholar 

  20. Data on file, Investigational brochure: mycophenolate mofetil (RS-61443-000). Palo Alto (CA): Syntex Research, 1996

  21. Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997; 5(3): 225–32

    Article  PubMed  CAS  Google Scholar 

  22. Smak Gregoor PJ, van Gelder T, Hesse CJ, et al. Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study. Nephrol Dial Transplant 1999; 14(3): 706–8

    Article  PubMed  CAS  Google Scholar 

  23. Zucker K, Tsaroucha A, Olson L, et al. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit 1999; 21(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  24. Gregoor PJ, de Sevaux RG, Hene RJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation 1999; 68(10): 1603–6

    Article  PubMed  CAS  Google Scholar 

  25. Pou L, Brunet M, Cantarell C, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit 2001; 23(1): 35–8

    Article  PubMed  CAS  Google Scholar 

  26. van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit 2001; 23(2): 119–28

    Article  PubMed  Google Scholar 

  27. van Gelder T, Klupp J, Barten MJ, et al. Co-administration of tacrolimus and mycophenolate mofetil does not increase mycophenolic acid (MPA) exposure, but co-administration of cyclosporine inhibits the enterohepatic recirculation of MPA, thereby decreasing its exposure. J Heart Lung Transplant 2001; 20(2): 160–1

    Article  PubMed  Google Scholar 

  28. Jain A, Venkataramanan R, Hamad IS, et al. Pharmacokinetics of mycophenolic acid after mycophenolate mofetil administration in liver transplant patients treated with tacrolimus. J Clin Pharmacol 2001; 41(3): 268–76

    Article  PubMed  CAS  Google Scholar 

  29. Kaplan B, Meier-Kriesche HU, Friedman G, et al. The effect of renal insufficiency on mycophenolic acid protein binding. J Clin Pharmacol 1999; 39(7): 715–20

    Article  PubMed  CAS  Google Scholar 

  30. Cho S, Hodge E, Navarro M. Mycophenolate mofetil improves long-term graft survival following renal transplantation in patients experiencing delayed graft function. International Mycophenolate mofetil Renal Study Groups. Transplant Proc 1999; 31(1-2): 322–3

    Article  PubMed  CAS  Google Scholar 

  31. Pally C, Tanner M, Rizvi H, et al. Tolerability profile of sodium mycophenolate (ERL080) and mycophenolate mofetil with and without cyclosporine (Neoral) in the rat. Toxicology 2001; 157(3): 207–15

    Article  PubMed  CAS  Google Scholar 

  32. Rihs G, Papageorgiou C, Pfeffer S. Sodium mycophenolate. Acta Crystallogr C 2000; 56(Pt 4): 432–3

    Google Scholar 

  33. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection [see comments]. Lancet 1995; 345 (8961): 1321–5

    Google Scholar 

  34. Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation [see comments]. Transplantation 1996; 61 (7): 1029–37

    Google Scholar 

  35. Sollinger HW, U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60(3): 225–32

    Article  PubMed  CAS  Google Scholar 

  36. Guerard A, Rabodonirina M, Cotte L, et al. Intestinal microsporidiosis occurring in two renal transplant recipients treated with mycophenolate mofetil. Transplantation 1999; 68(5): 699–707

    Article  PubMed  CAS  Google Scholar 

  37. Allison AC, Eugui EM. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transplant 1996; 10(1 Pt 2): 77–84

    PubMed  CAS  Google Scholar 

  38. Sanquer S, Breil M, Baron C, et al. Induction of inosine monophosphate dehydrogenase activity after long-term treatment with mycophenolate mofetil. Clin Pharmacol Ther 1999; 65(6): 640–8

    Article  PubMed  CAS  Google Scholar 

  39. Ducloux D, Ottignon Y, Semhoun-Ducloux S, et al. Mycophenolate mofetil-induced villous atrophy. Transplantation 1998; 66(8): 1115–6

    Article  PubMed  CAS  Google Scholar 

  40. van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. Arandomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation [see comments]. Transplantation 1999; 68(2): 261–6

    Article  PubMed  Google Scholar 

  41. Mourad M, Malaise J, Chaib ED, et al. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil. Clin Chem 2001; 47(1): 88–94

    PubMed  CAS  Google Scholar 

  42. Berribi C, Loirat C, Jacqz-Aigrain E. Mycophenolate mofetil may induce apoptosis in duodenal villi. Pediatr Nephrol 2000; 14(2): 177–8

    PubMed  CAS  Google Scholar 

  43. McCauley R, Kong SE, Hall J. Glutamine and nucleotide metabolism within enterocytes. JPEN J Parenter Enteral Nutr 1998; 22(2): 105–11

    Article  PubMed  CAS  Google Scholar 

  44. Yanchar NL, Fedorak RN, Kneteman NM, et al. Nutritional and intestinal effects of the novel immunosuppressive agents: deoxyspergualin, rapamycin, and mycophenolate mofetil. Clin Biochem 1996; 29(4): 363–9

    Article  PubMed  CAS  Google Scholar 

  45. Fedorak RN, Chang EB, Madara JL, et al. Intestinal adaptation to diabetes. Altered Na-dependent nutrient absorption in streptozocin-treated chronically diabetic rats. J Clin Invest 1987; 79(6): 1571–8

    Article  PubMed  CAS  Google Scholar 

  46. Kaplan B, Meier-Kriesche HU, Jacobs MG, et al. Prevalence of cytomegalovirus in the gastrointestinal tract of renal transplant recipients with persistent abdominal pain. Am J Kidney Dis 1999; 34(1): 65–8

    Article  PubMed  CAS  Google Scholar 

  47. Gallagher H, Andrews PA. Cytomegalovirus infection and abdominal pain with mycophenolate mofetil: is there a link? Drug Saf 2001; 24(6) 405–12

    Article  PubMed  CAS  Google Scholar 

  48. Sarmiento JM, Dockrell DH, Schwab TR, et al. Mycophenolate mofetil increases cytomegalovirus invasive organ disease in renal transplant patients. Clin Transplant 2000; 14(2): 136–8

    Article  PubMed  CAS  Google Scholar 

  49. Sarmiento JM, Munn SR, Paya CV, et al. Is cytomegalovirus infection related to mycophenolate mofetil after kidney transplantation? A case-control study. Clin Transplant 1998; 12(5): 371–4

    PubMed  CAS  Google Scholar 

  50. ter Meulen CG, Wetzels JF, Hilbrands LB. The influence of mycophenolate mofetil on the incidence and severity of primary cytomegalovirus infections and disease after renal transplantation. Nephrol Dial Transplant 2000; 15(5): 711–4

    Article  PubMed  Google Scholar 

  51. Noble S, Faulds D. Ganciclovir: an update of its use in the prevention of cytomegalovirus infection and disease in transplant recipients. Drugs 1998; 56(1): 115–46

    Article  PubMed  CAS  Google Scholar 

  52. Bienvenu B, Thervet E, Bedrossian J, et al. Development of cytomegalovirus resistance to ganciclovir after oral maintenance treatment in a renal transplant recipient. Transplantation 2000; 69(1): 182–4

    Article  PubMed  CAS  Google Scholar 

  53. Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol 2000; 14(2): 100–4

    Article  PubMed  CAS  Google Scholar 

  54. Oellerich M, Shipkova M, Schutz E, et al., German Study Group on Mycophenolate mofetil Therapy in Pediatric Renal Transplant Recipients. Pharmacokinetic and metabolic investigations of mycophenolic acid in pediatric patients after renal transplantation: implications for therapeutic drug monitoring. Ther Drug Monit 2000; 22(1): 20–6

    Article  PubMed  CAS  Google Scholar 

  55. Weber LT, Schutz E, Lamersdorf T, et al., German Study Group on Mycophenolate Mofetil (MMF) Therapy. Pharmacokinetics of mycophenolic acid (MPA) and free MPA in paediatric renal transplant recipients: a multicentre study. Nephrol Dial Transplant 1999; 14Suppl. 4: 33–4

    Article  PubMed  Google Scholar 

  56. Filler G, Mai I. Limited sampling strategy for mycophenolic acid area under the curve. Ther Drug Monit 2000; 22(2): 169–73

    Article  PubMed  CAS  Google Scholar 

  57. Roberti I, Reisman L. A comparative analysis of the use of mycophenolate mofetil in pediatric vs. adult renal allograft recipients. Pediatr Transplant 1999; 3(3): 231–5

    Article  PubMed  CAS  Google Scholar 

  58. Mycophenolate Mofetil Renal Refractory Rejection Study Group. Mycophenolate mofetil for the treatment of refractory, acute, cellular renal transplant rejection. Transplantation 1996; 61(5): 722–9

    Google Scholar 

  59. Halloran P, Mathew T, Tomlanovich S, et al., International Mycophenolate Mofetil Renal Transplant Study Groups. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection [published erratum appears in Transplantation 1997 Feb 27; 63 (4): 618]. Transplantation 1997; 63(1): 39–47

    Article  PubMed  CAS  Google Scholar 

  60. Jacobs F, Mamzer-Bruneel MF, Skhiri H, et al. Safety of the mycophenolate mofetil-allopurinol combination in kidney transplant recipients with gout [letter]. Transplantation 1997; 64(7): 1087–8

    Article  PubMed  CAS  Google Scholar 

  61. Sollinger HW, Belzer FO, Deierhoi MH, et al. RS-61443 (mycophenolate mofetil). A multicenter study for refractory kidney transplant rejection. Ann Surg 1992; 216(4): 513–8

    Article  PubMed  CAS  Google Scholar 

  62. Goldblum R. Therapy of rheumatoid arthritis with my cophenolate mofetil. Clin Exp Rheumatol 1993; 11Suppl. 8: S117–9

    PubMed  Google Scholar 

  63. Fellermann K, Steffen M, Stein J, et al. Mycophenolate mofetil: lack of efficacy in chronic active inflammatory bowel disease. Aliment Pharmacol Ther 2000; 14(2): 171–6

    Article  PubMed  CAS  Google Scholar 

  64. Neurath MF, Wanitschke R, Peters M, et al. Mycophenolate mofetil for treatment of active inflammatory bowel disease. Clinical and immunological studies. Ann N Y Acad Sci 1998; 859: 315–8

    Article  PubMed  CAS  Google Scholar 

  65. Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev 1993; 136: 5–28

    Article  PubMed  CAS  Google Scholar 

  66. Azuma H, Binder J, Heemann U, et al. Effects of RS61443 on functional and morphological changes in chronically rejecting rat kidney allografts. Transplantation 1995; 59(4): 460–6

    PubMed  CAS  Google Scholar 

  67. Deierhoi MH, Kauffman RS, Hudson SL, et al. Experience with mycophenolate mofetil (RS61443) in renal transplantation at a single center. Ann Surg 1993; 217(5): 476–82

    Article  PubMed  CAS  Google Scholar 

  68. Freise CE, Hebert M, Osorio RW, et al. Maintenance immunosuppression with prednisone and RS-61443 alone following liver transplantation. Transplant Proc 1993; 25(2): 1758–9

    PubMed  CAS  Google Scholar 

  69. Behrend M. A review of clinical experience with the novel immunosuppressive drug mycophenolate mofetil in renal transplantation. Clin Nephrol 1996; 45(5): 336–41

    PubMed  Google Scholar 

  70. Behrend M. Mycophenolate mofetil. Expert Opin Investig Drugs 1998; 7: 1509–1519

    Article  PubMed  CAS  Google Scholar 

  71. Mycophenolate Mofetil Acute Renal Rejection Study Group. Mycophenolate mofetil for the treatment of a first acute renal allograft rejection [published erratum appears in Transplantation 1998 Apr 15; 65 (7) following table of contents]. Transplantation 1998; 65 (2): 235–41

    Google Scholar 

  72. Sterneck M, Fischer L, Gahlemann C, et al. Mycophenolate mofetil for prevention of liver allograft rejection: initial results of a controlled clinical trial. Ann Transplant 2000; 5(1): 43–6

    PubMed  CAS  Google Scholar 

  73. Papatheodoridis GV, O’Beirne J, Mistry P, et al. Mycophenolate mofetil monotherapy in stable liver transplant patients with cyclosporine-induced renal impairment: a preliminary report. Transplantation 1999; 68(1): 155–7

    Article  PubMed  CAS  Google Scholar 

  74. Fisher RA, Ham JM, Marcos A, et al. A prospective randomized trial of mycophenolate mofetil with neoral or tacrolimus after orthotopic liver transplantation. Transplantation 1998; 66(12): 1616–21

    Article  PubMed  CAS  Google Scholar 

  75. Herrero JI, Quiroga J, Sangro B, et al. Conversion of liver transplant recipients on cyclosporine with renal impairment to mycophenolate mofetil. Liver Transpl Surg 1999; 5(5): 414–20

    Article  PubMed  CAS  Google Scholar 

  76. Costanzo MR, Mycophenolate mofetil Study Investigators. Results of the randomized trial of mycophenolate mofetil vs azathioprine in heart transplantation [abstract]. American Society for Transplant Physicians 15th Annual Scientific Meeting; 1997 May 10; Chicago

  77. Kobashigawa JA. Mycophenolate mofetil in cardiac transplantation. Curr Opin Cardiol 1998; 13(2): 117–21

    Article  PubMed  CAS  Google Scholar 

  78. Ensley RD, Bristow MR, Olsen SL, et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation 1993; 56(1): 75–82

    Article  PubMed  CAS  Google Scholar 

  79. Present DH. Is mycophenolate mofetil a new alternative in the treatment of inflammatory bowel disease? Gut 1999; 44(5): 592–3

    Article  PubMed  CAS  Google Scholar 

  80. Florin TH, Roberts RK, Watson MR, et al. Treatment of steroid refractory inflammatory bowel disease (IBD) with Mycophenolate mofetil (MMF). Aust N Z J Med 1998; 28(3): 344–5

    Article  PubMed  CAS  Google Scholar 

  81. Orth T, Peters M, Schlaak JF, et al. Mycophenolate mofetil versus azathioprine in patients with chronic active ulcerative colitis: a 12-month pilot study. Am J Gastroenterol 2000; 95(5): 1201–7

    Article  PubMed  CAS  Google Scholar 

  82. Radford-Smith GL, Taylor P, Florin TH. Mycophenolate mofetil in IBD patients. Lancet 1999; 354(9187): 1386–7

    Article  PubMed  CAS  Google Scholar 

  83. Roth D, Colona J, Burke GW, et al. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. Transplantation 1998; 65(2): 248–52

    Article  PubMed  CAS  Google Scholar 

  84. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective, randomized trial of FK 506/prednisone vs FK 506/azathioprine/prednisone in renal transplant patients. Transplant Proc0 1995; 27(1): 814–7

    PubMed  CAS  Google Scholar 

  85. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective, randomized trial to compare tacrolimus and prednisone with and without mycophenolate mofetil in patients undergoing renal transplantation: first report. J Urol 1998; 160(6 Pt 1): 1982–5

    PubMed  CAS  Google Scholar 

  86. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective, randomized trial of tacrolimus/prednisone versus tacrolimus/prednisone/mycophenolate mofetil in renal transplant recipients. Transplantation 1999; 67(3): 411–5

    Article  PubMed  CAS  Google Scholar 

  87. Miller J, FK506/MMF Dose-Ranging Kidney Transplant Study Group. Tacrolimus and mycophenolate mofetil in renal transplant recipients: one year results of a multicenter, randomized dose ranging trial. Transplant Proc 1999; 31(1-2): 276–7

    Article  PubMed  CAS  Google Scholar 

  88. Pirsch J, Bekersky I, Vincenti F, et al. Coadministration of tacrolimus and mycophenolate mofetil in stable kidney transplant patients: pharmacokinetics and tolerability. J Clin Pharmacol 2000; 40(5): 527–32

    Article  PubMed  CAS  Google Scholar 

  89. Kreis H, Cisterne JM, Land W, et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 2000; 69(7): 1252–60

    Article  PubMed  CAS  Google Scholar 

  90. Birkeland SA, Larsen KE, Rohr N. Pediatric renal transplantation without steroids. Pediatr Nephrol 1998; 12(2): 87–92

    Article  PubMed  CAS  Google Scholar 

  91. Fille G, Ehric J. Mycophenolate mofetil for rescue therapy in acute renal transplant rejection in children should always be monitored by measurement of trough concentration [letter]. Nephrol Dial Transplant 1997; 12(2): 374–5

    Article  Google Scholar 

  92. Benfield MR, Stablei D, Tejan A. Trends in immunosuppressive therapy: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant 1999; 3(1): 27–32

    Article  PubMed  CAS  Google Scholar 

  93. Benfield MR, Symons JM, Bynon S, et al. Mycophenolate mofetil in pediatric renal transplantation [see comments]. Pediatr Transplant 1999; 3(1): 33–7

    Article  PubMed  CAS  Google Scholar 

  94. Neu AM, Benfield M. What is the role for mycophenolate mofetil in pediatric renal transplantation? Pediatr Transplant 1999; 3(1): 83–7

    Article  PubMed  CAS  Google Scholar 

  95. Seikaly MG. Mycophenolate mofetil: is it worth the cost? The in-favor opinion [see comments]. Pediatr Transplant 1999; 3(1): 79–82

    Article  PubMed  CAS  Google Scholar 

  96. Butani L, Palmer J, Baluarte HJ, et al. Adverse effects of mycophenolate mofetil in pediatric renal transplant recipients with presumed chronic rejection. Transplantation 1999; 68(1): 83–6

    Article  PubMed  CAS  Google Scholar 

  97. Ferraris JR, Tambutti ML, Redal MA, et al. Conversion from azathioprine to mycophenolate mofetil in pediatric renal transplant recipients with chronic rejection. Transplantation 2000; 70(2): 297–301

    Article  PubMed  CAS  Google Scholar 

  98. Filler G, Gellermann J, Zimmering M, et al. Effect of adding mycophenolate mofetil in paediatric renal transplant recipients with chronical cyclosporine nephrotoxicity. Transpl Int 2000; 13(3): 201–6

    Article  PubMed  CAS  Google Scholar 

  99. European Mycophenolate Mofetil Cooperative Study Group. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. Transplantation 1999; 68 (3): 391–6

    Google Scholar 

  100. US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil in cadaveric renal transplantation. Am J Kidney Dis 1999; 34 (2): 296–303

    Google Scholar 

  101. Mathew TH, Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Ablinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years [published erratum appears in Transplantation 1998 Sep 27; 66 (6): 817]. Transplantation 1998; 65(11): 1450–4

    Article  PubMed  CAS  Google Scholar 

  102. Hricik DE, Kupin WL, First MR. Steroid-free immunosuppression after renal transplantation. J Am Soc Nephrol 1994; 4(8 Suppl.): S10–6

    PubMed  CAS  Google Scholar 

  103. Hilbrands LB, Hoitsma AJ, Koene RA. The effect of immunosuppressive drugs on quality of life after renal transplantation. Transplantation 1995; 59(9): 1263–70

    PubMed  CAS  Google Scholar 

  104. Hall BM, Tiller DJ, Hardie I, et al. Comparison of three immunosuppressive regimens in cadaver renal transplantation: long-term cyclosporine, short-term cyclosporine followed by azathioprine and prednisolone, and azathioprine and prednisolone without cyclosporine. N Engl J Med 1988; 318(23): 1499–507

    Article  PubMed  CAS  Google Scholar 

  105. Opelz G, Collaborative Transplant Study. Influence of treatment with cyclosporine, azathioprine and steroids on chronic allograft failure. Kidney Int Suppl 1995; 52: S89–92

    PubMed  CAS  Google Scholar 

  106. Grinyo JM, Gil-Vernet S, Seron D, et al. Steroid withdrawal in mycophenolate mofetil-treated renal allograft recipients. Transplantation 1997; 63(11): 1688–90

    Article  PubMed  CAS  Google Scholar 

  107. Kupin W, Venkat KK, Goggins M, et al. Improved outcome of steroid withdrawal inmycophenolate mofetil-treated primary cadaveric renal transplant recipients. Transplant Proc 1999; 31(1-2): 1131–2

    Article  PubMed  CAS  Google Scholar 

  108. Lebranchu Y, M55002 Study Group. Comparison of two corticosteroid regimens in combination with CellCept and cyclosporine Afor prevention of acute allograft rejection: 12 month results of a double-blind, randomized, multi-center study. Transplant Proc 1999; 31(1-2): 249–50

    Article  PubMed  CAS  Google Scholar 

  109. Birkeland SA. Steroid-free immunosuppression after kidney transplantation with antithymocyte globulin induction and cyclosporine and mycophenolate mofetil maintenance therapy. Transplantation 1998; 66(9): 1207–10

    Article  PubMed  CAS  Google Scholar 

  110. Smak Gregoor PJ, van Gelder T, van Besouw NM, et al. Randomized study on the conversion of treatment with cyclosporine to azathioprine or mycophenolate mofetil followed by dose reduction [see comments]. Transplantation 2000; 70(1): 143–8

    PubMed  CAS  Google Scholar 

  111. Kim HC, Park SB. Mycophenolate mofetil-induced ischemic colitis. Transplant Proc 2000; 32(7): 1896–7

    Article  PubMed  CAS  Google Scholar 

  112. Chueh S, Huang C, Lai M. Mycophenolate mofetil-induced hyperbilirubinemia in renal transplant recipients. Transplant Proc 2000; 32(7): 1901–2

    Article  PubMed  CAS  Google Scholar 

  113. Bullingham RE, Nicholls A, Hale M. Pharmacokinetics of mycophenolate mofetil (RS61443): a short review. Transplant Proc 1996; 28(2): 925–9

    PubMed  CAS  Google Scholar 

  114. Hale MD, Nicholls AJ, Bullingham RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther 1998; 64(6): 672–83

    Article  PubMed  CAS  Google Scholar 

  115. Langman LJ, LeGatt DF, Halloran PF, et al. Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression in renal transplant recipients. Transplantation 1996; 62(5): 666–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Behrend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrend, M. Adverse Gastrointestinal Effects of Mycophenolate Mofetil. Drug-Safety 24, 645–663 (2001). https://doi.org/10.2165/00002018-200124090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200124090-00002

Keywords

Navigation