Skip to main content
Log in

Hydrogen sulfide as a neuromodulator

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is a well-known toxic gas with the smell of rotten eggs. Since the first description of the toxicity of H2S in 1713, most studies about H2S have been devoted to its toxic effects. Recently, H2S has been proposed as a physiologically active messenger. Three groups discovered that the brain contains relatively high concentrations of endogenous H2S. This discovery accelerated the identification of an H2S-producing enzyme, cystathionine β-synthase (CBS) in the brain. In addition to the well-known regulators for CBS, S-adenosyl-L-methionine (SAM) and pyridoxal-5′-phosphate, it was recently found that Ca2+/calmodulin-mediated pathways are involved in the regulation of CBS activity. H2S is produced in response to neuronal excitation, and alters hippocampal long-term potentiation (LTP), a synaptic model for memory. can also regulate the release of corticotropin-releasing hormone (CRH) from hypothalamus. Another H2S producing enzyme, cystathionine γ-lyase (CSE), has been identified in smooth muscle, and H2S relaxes smooth muscle in synergy with nitric oxide (NO). Recent progress in the study of H2S as a novel neuromodulator/transmitter in the brain is briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramazzini B. (1713) Diseases of Workers (Translated from the Latin text De Morbis Artificum by W. C. Wright, 1940) University of Chicago Press, Chicago, IL. (Reprinted ed 1964 in History Med., Vol. 23.)

    Google Scholar 

  2. Reiffenstein R. J., Hulbert W. C., and Roth S. H. (1992) Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol. 32, 109–134.

    Article  PubMed  CAS  Google Scholar 

  3. Warenycia M. W., Goodwin L. R., Benishin C. G., Reiffenstein R. J., Francom D. M., Taylor J. D., and Dieken F. P. (1989) Acute hydrogen sulfide poisoning: demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharmacol. 38, 973–981.

    Article  PubMed  CAS  Google Scholar 

  4. Goodwin L. R., Francom D., Dieken F. P., Taylor J. D., Warenycia M. W., Reiffenstein R. J., and Dowling G. (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J. Anal. Toxicol. 13, 105–109.

    PubMed  CAS  Google Scholar 

  5. Savage J. C. and Gould D. H. (1990) Determination of sulfides in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J. Chromatogr. 526, 540–545.

    Article  PubMed  CAS  Google Scholar 

  6. Stipanuk M. H. and Beck P. W. (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem. J. 206, 267–277.

    PubMed  CAS  Google Scholar 

  7. Griffith O. W. (1987) Mammalian sulfur amino acid metabolism: an overview, in Methods in enzymology, (Jakoby W. B. and Griffith O. W., eds.) Vol. 143 Academic, New York: pp. 366–376.

    Google Scholar 

  8. Erickson P. F., Maxwel I. H., Su L. J., Baumann M., and Glode L. M. (1990) Sequence of cDNA for rat cystathionine γ-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem. J. 269, 335–340.

    PubMed  CAS  Google Scholar 

  9. Swaroop M., Bradley K., Ohura T., Tahara T., Roper M. D., Rosenberg L. E., and Kraus J. P. (1992) Rat cystathionine β-synthase. J. Biol. Chem. 267, 11455–11461.

    PubMed  CAS  Google Scholar 

  10. Abe K. and Kimura H. (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071.

    PubMed  CAS  Google Scholar 

  11. Eto K., Ogasawara M., Umemura K., Nagai Y. and Kimura H. (2002) Hydrogen sulfide is produced in response to neuronal excitation. J. Neurosci. 22, 3386–3391.

    PubMed  CAS  Google Scholar 

  12. Palmer R. M. J., Ashton D. S., and Moncada S. (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666.

    Article  PubMed  CAS  Google Scholar 

  13. Bredt D. S. and Snyder S. H. (1992) Nitric oxide, a novel neuronal messenger. Neuron 8, 3–11.

    Article  PubMed  CAS  Google Scholar 

  14. Maines M. D. (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568.

    PubMed  CAS  Google Scholar 

  15. Verma A., Hirsch D. J., Glatt C. E., Ronnett G. V., and Snyder, S. H. (1993) Carbon monoxide: a putative neural messenger. Science 259, 381–384.

    Article  PubMed  CAS  Google Scholar 

  16. O’Dell T. J., Hawkins R. D., Kandel E. R., and Arancio O. (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. USA 88, 11285–11289.

    Article  PubMed  CAS  Google Scholar 

  17. Schuman E. M. and Madison D. V. (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  18. Haley J. E., Wilcox G. L., and Chapman P. F. (1992) The role of nitric oxide in hippocampal long-term potentiation. Neuron 8, 211–216.

    Article  PubMed  CAS  Google Scholar 

  19. Stevens C. F. and Wang Y. (1993) Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature 364, 147–149.

    Article  PubMed  CAS  Google Scholar 

  20. Zhuo M., Small S. A., Kandel E. R., and Hawkins R. D. (1993) Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260, 1946–1950.

    Article  PubMed  CAS  Google Scholar 

  21. Bliss T. V., and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  22. Snyder S. H. and Ferris C. D. (2000) Novel neurotransmitters and their neuropsychiatric relevance. Am. J. Psychiatry 157, 1738–1751.

    Article  PubMed  CAS  Google Scholar 

  23. Garthwaite J., Charles S. L., and Chess-Williams R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388.

    Article  PubMed  CAS  Google Scholar 

  24. Bredt D. S. and Snyder S. H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87, 682–685.

    Article  PubMed  CAS  Google Scholar 

  25. Russo C. D., Tringali G., Ragazzoni E., Maggiano N., Menini E., Vairano M., et al. (2000) Evidence that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat. J. Neuroend. 12, 225–233.

    Article  Google Scholar 

  26. Finkelstein J. D., Kyle W. E., Martin J. J., and Pick A. M. (1975) Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem. Biophys. Res. Commun. 66, 81–87.

    Article  PubMed  CAS  Google Scholar 

  27. Kery V., Bukovska G., and Kraus J. P. (1994) Transsulfuration depends on heme in addition to pyridoxal 5′-phosphate. J. Biol. Chem. 269, 25283–25288.

    PubMed  CAS  Google Scholar 

  28. Rhoads A. R. and Friedberg F. (1997) Sequence motifs for calmodulin recognition. FASEB J. 11, 331–340.

    PubMed  CAS  Google Scholar 

  29. Mudd S. H., Levy H. L., and Skovby F. (1989) Disorders of transsulfuration, in The Metabolic Basis of Inherited Disease (Scriver C. R., Beaudet A. L., Sly W. S., Valle D., eds.) McGraw-Hill, New York, pp 693–734.

    Google Scholar 

  30. Shan X., Dunbrack R. L. J., Christopher S. A., and Kruger W. D., (2001) Mutation in the regulatory domain of cystathionine β-synthase can functionally suppress patient-derived mutations in cis. Human Mol. Genet. 10, 635–643.

    Article  CAS  Google Scholar 

  31. Navarra P., Dello Russo C., Mancuso C., Preziosi P., and Grossman A. (2000) Gaseous neuromodulator in the control of neuroendocrine stress axis. Ann. NY. Acad. Sci. 917, 638–646.

    Article  PubMed  CAS  Google Scholar 

  32. Kimura H. (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Comm. 267, 129–133.

    Article  PubMed  CAS  Google Scholar 

  33. Leonard A. S. and Hell J. W. (1997) Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. J. Biol. Chem. 272, 12107–12115.

    Article  PubMed  CAS  Google Scholar 

  34. Tingley W. G., Ehlers M. D., Kameyama K., Doherty C., Ptak J. B., Riley C. T., and Huganir R. L. (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157–5166.

    Article  PubMed  CAS  Google Scholar 

  35. Skovby F., Krassikoff N., and Francke U. (1984) Assignment of the gene for cystathionine beta-synthase to human chromosome 21 in somatic cell hybrids. Hum. Genet. 65, 291–294.

    Article  PubMed  CAS  Google Scholar 

  36. Munke M., Kraus J. P., Ohura T., and Francke, U. (1988) The gene for cystathionine beta-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am. J. Hum. Genet. 42, 550–559.

    PubMed  CAS  Google Scholar 

  37. Korenberg J. R., Kawashima H., Pulst S. M., Ikeuchi T., Ogasawara N., Yamamoto, et al. (1990) Molecular definition of a region of chromosome 21 that causes features of the down syndrome phenotype. Am. J. Hum. Genet. 47, 236–246.

    PubMed  CAS  Google Scholar 

  38. Kraus J. P. (1990) Molecular analysis of cystathionine β-synthase-a gene on chromosome 21. Prog. Clin. Biol. Res. 360, 201–214.

    PubMed  CAS  Google Scholar 

  39. Kamoun P. (2001) Mental retardation in Down syndrome: a hydrogen sulfide hypothesis. Med. Hypotheses 57, 389–392.

    Article  PubMed  CAS  Google Scholar 

  40. Boutell J. M., Wood J. D., Harper P. S., and Jones A. L. (1998) Huntingtin interacts with cystathionine β-synthase. Human Mol. Genet. 7, 371–378.

    Article  CAS  Google Scholar 

  41. Barbaux S., Plomin, R., and Whitehead A. S. (2000) Polymorphisms of genes controlling homocysteine/folate metabolism and cognitive function. NeuroReport 11, 1133–1136.

    Article  PubMed  CAS  Google Scholar 

  42. Kalaria R. N. (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging 21, 321–330.

    Article  PubMed  CAS  Google Scholar 

  43. De la Torre J. C. and Mussivand T. (1993) Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol. Res. 15, 146–153.

    PubMed  Google Scholar 

  44. Hosoki R., Matsuki N., and Kimura H. (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 237, 527–531.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao W., Zhang J., Lu Y., and Wang R. (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 20, 6008–6016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26, 13–19 (2002). https://doi.org/10.1385/MN:26:1:013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:26:1:013

Index Entries

Navigation