Skip to main content
Log in

Opioid tolerance and the emergence of new opioid receptor-coupled signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple cellular adaptations are elicited by chronic exposure to opioids. These include diminution of spare opioid receptors, decreased opioid receptor density, and G-protein content and coupling thereof. All imply that opioid tolerance is a manifestation of a loss of opioid function, i.e., desensitization. Recent observations challenge the exclusiveness of this formulation and indicate that opioid tolerance also results from qualitative changes in opioid signaling. In this article, Gintzler and Chakrabarti discuss the evidence that suggests that opioid tolerance results not only from impaired opioid receptor functionality, but also from altered consequences of coupling. Underlying the latter are fundamental changes in the nature of effectors that are coupled to the opioid receptor/G-protein signaling pathway. These molecular changes include the upregulation of adenylyl cyclase isoforms of the type II family as well as a substantial increase in their phosphorylation state. As a result, there is a shift in opioid receptor/G-protein signaling from predominantly G inhibitory to Gβγ stimulatory following chronic in vivo morphine exposure. These adaptations to chronic morphine indicate the plasticity of opioid-signal transduction mechanisms and the ability of chronic morphine to augment new signaling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ammer H. and Schulz R. (1993) Alterations of the expression of G proteins and regulation of adenylate cyclase in human neuroblastoma SH-SY5Y cells chronically exposed to low-efficacy mu-opioids. Biochem. J. 295, 263–271.

    PubMed  CAS  Google Scholar 

  • Avidor-Reiss T., Bayewitch M., Levy R., Matus-Leibovitch N., Nevo I., and Vogel Z. (1995) Adenylyl cyclase supersensitization in mu-opioid receptor-transfected Chinese hamster ovary cells following chronic opioid treatment. J. Biol. Chem. 270, 29,732–29,738.

    CAS  Google Scholar 

  • Avidor-Reiss T., Nevo I., Saya D., Bayewitch M., and Vogel Z. (1997) Opiate-induced adenylyl cyclase superactivation is isozyme-specific. J. Biol. Chem. 272(8), 5040–5047.

    Article  PubMed  CAS  Google Scholar 

  • Beani L., Bianchi C., and Siniscalchi A. (1982) The effect of naloxone on opioid-induced inhibition and facilitation of acetylcholine release in brain slices. Br. J. Pharmacol. 76, 393–401.

    PubMed  CAS  Google Scholar 

  • Bourgoin S., Benoliel J. J., Collin E., Mauborgne A., Pohl M., et al. (1994) Opioidergic control of the spinal release of neuropeptides. Possible significance for the analgesic effects of opioids. Fundam. Clin. Pharmacol. 8, 307–321.

    Article  PubMed  CAS  Google Scholar 

  • Cahill C. M., White T. D., and Sawynok J. (1995) Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes. J. Pharmacol. Exp. Ther. 275, 84–93.

    PubMed  CAS  Google Scholar 

  • Chakrabarti S., Prather P. L., Yu L., Law P.-Y., and Loh H. H. (1995a) Expression of the μ-opioid receptor in CHO cells: ability of μ-opioid ligands to promote α-azidoanilido[32P]GTP labeling of multiple G protein α subunits. J. Neurochem. 64, 2534–2543.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti S., Law P.-Y., and Loh H. H. (1995b) Neuroblastoma neuro2A cells stably expressing a cloned μ-opioid receptor: a specific cellular model to study acute and chronic effects of morphine. Mol. Brain Res. 30, 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti S., Rivera M., Yan S.-Z., Tang W.-J., and Gintzler A. R. (1998a) Chronic morphine augments Gβγ/G stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol. Pharmacol. 54, 655–662.

    PubMed  CAS  Google Scholar 

  • Chakrabarti S., Wang L., Tang W.-J., and Gintzler A. R. (1998b) Chronic morphine augments adenylyl cyclase phosphorylation: relevance to altered signaling during tolerance/dependence. Mol. Pharmacol. 54, 949–953.

    PubMed  CAS  Google Scholar 

  • Chavkin C. and Goldstein A. (1984) Opioid receptor reserve in normal and morphine-tolerant guinea pig ileum myenteric plexus. Proc. Natl. Acad. Sci. USA 81(22), 7253–7257.

    Article  PubMed  CAS  Google Scholar 

  • Chen J., DeVivo M., Dingus J., Harry A., Li J et al. (1995) A region of adenylyl cyclase 2 critical for regulation by G protein βγ subunits. Science 268, 1166–1169.

    Article  PubMed  CAS  Google Scholar 

  • Childers S. R. (1991) Opioid receptor-coupled second messenger systems. Life Sci. 48, 1991–2003.

    Article  PubMed  CAS  Google Scholar 

  • Daaka Y., Luttrell L. M., and Lefkowitz R. J. (1997) Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91.

    Article  PubMed  CAS  Google Scholar 

  • Devine D. P., Leone P., Pocock D., and Wise R. A. (1993) Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J. Pharmacol. Exp. Ther. 266, 1236–1246.

    PubMed  CAS  Google Scholar 

  • Duggan A. W. and North R. A. (1984) Electrophysiology of opioids. Pharmacol. Rev. 35, 219–281.

    Google Scholar 

  • Duman R. S., Tallman J. F., and Nestler E. J. (1988) Acute and chronic opiate-receptor regulation of adenylate cyclase in brain: specific effects in locus coerulus. J. Pharmacol. Exp. Ther. 246(3), 1033–1039.

    PubMed  CAS  Google Scholar 

  • Eason M. G., Kuroses H., Holt B. D., Raymond J. R., and Liggett S. B. (1992) Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects. J. Biol. Chem. 267(22), 15,795–15,801.

    CAS  Google Scholar 

  • Eriksson P. S., Nilsson M., Wagberg M., Hansson E., and Ronnback L. (1993) Kappa-opioid receptors on astrocytes stimulate L-type Ca2+ channels. Neuroscience 54, 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Federman A. D., Conklin B. R., Schrader K. A., Reed R. R., and Bourne H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 356, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Gao B. and Gilman A. G. (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc. Natl. Acad. Sci. USA 88, 10,178–10,182.

    CAS  Google Scholar 

  • Gintzler A. R., Chan W. C., and Glass J. (1987) Evoked release of methionine-enkephalin from tolerant/dependent enteric ganglia: paradoxical dependence on morphine. Proc. Natl. Acad. Sci. USA 84, 2537–2539.

    Article  PubMed  CAS  Google Scholar 

  • Gintzler A. R. and Xu H. (1991) Different G proteins mediate the opioid inhibition or enhancement of evoked [5-methionine]enkephalin release. Proc. Natl. Acad. Sci. USA 88, 4741–4745.

    Article  PubMed  CAS  Google Scholar 

  • Gross R. A. and Macdonald R. L. (1987) Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc. Natl. Acad. Sci. USA 84, 5469–5473.

    Article  PubMed  CAS  Google Scholar 

  • Higashi H., Shinnick-Gallagher P., and Gallagher J. P. (1982) Morphine enhances and depresses Ca2+-dependent responses in visceral primary afferent neurons. Brain Res. 251, 186–191.

    Article  PubMed  CAS  Google Scholar 

  • Hirai K. and Katayama Y. (1988) Methionine-enkephalin presynaptically facilites and inhibits bullforg sympathetic ganglionic transmission. Brain Res. 448, 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K., Kobayashi T., Ichikawa T., Usui H., and Kumanishi T. (1995) Functional couplings of the delta- and the kappa-opioid receptors with the G-protein-activated K+ channel. Biochem. Biophys. Res. Commun. 208, 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Ingram S. L., Vaughan C. W., Bagley E. E., Connor M., and Christe M. J. (1998) Enhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway. J. Neurosci. 18, 10,269–10,276.

    CAS  Google Scholar 

  • Jacobowitz O. and Iyengar R. (1994) Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc. Natl. Acad. Sci. USA 91, 10,630–10,634.

    Article  CAS  Google Scholar 

  • Jin W., Lee N. M., Loh H. H., and Thayer S. A. (1992) Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma x gldioma hybrid NG108-15 cells. Mol. Pharm. 42, 1083–1089.

    CAS  Google Scholar 

  • Jin W., Lee N. M., Loh H. H., and Thayer A. (1994) Opioids mobilize calcium from inositol 1,4,5-trisphosphate-sensitive stores in NG 108-15 cells. J. Neurosci. 14, 1920–1929.

    PubMed  CAS  Google Scholar 

  • Johnson P. S., Wang J. B., Wang W. F., and UhI G. R. (1994) Expressed mu opiate receptor couples to adenylate cyclase and phosphatidyl inositol turnover. Neuroreport 5(4), 507–509.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S., Nakamura S., Adachi K., Akaike A., and Satoh M. (1994) Mobilization of intracellular Ca2+ and stimulation of cyclic AMP production by kappa opioid receptors expressed in Xenopus oocytes. Mol. Brain Res. 27, 258–264.

    Article  PubMed  Google Scholar 

  • Keren O., Gafni M., and Sarne Y. (1997) Opioids potentiate transmitter release from SK-N-SH human neuroblastoma cells by modulating N-type calcium channels. Brain Res. 764, 277–282.

    Article  PubMed  CAS  Google Scholar 

  • Kovoor A., Henry D. J., and Chavkin C. (1995) Agonist-induced desensitization of the Mu opioid receptor-coupled potssium channel (GIRK1). J. Biol. Chem. 270, 589–595.

    Article  PubMed  CAS  Google Scholar 

  • Lang J. and Schulz R. (1989) Chronic opiate receptor activation in vivo alters the level of G-protein subunits in guinea pig myenteric plexus. Neuroscience 32(2), 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Laugwitz K. L. and Offermanns S. (1993) μ and δ opioid receptors differentially couple to G protein subtypes in membranes of human neuroblastoma SH-SY5Y cells. Neuron 10, 233–242.

    Article  PubMed  CAS  Google Scholar 

  • Leslie F. M. (1987) Methods used for the study of opioid receptors. Pharmacol. Rev. 39, 197–249.

    PubMed  CAS  Google Scholar 

  • Lin Y. and Carpenter D. O. (1994) Direct excitatory opiate effects mediated by nonsynaptic actions on rat medial vestibular neurons. Eur. J. Pharmacol. 262, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Loh H. H. and Smith A. P. (1990) Molecular characterization of opioid receptors. Ann. Rev. Pharmacol. Toxicol. 30, 123–147.

    Article  CAS  Google Scholar 

  • Lorentz M., Hedlund B., and Arhem P. (1988) Morphine ativates calcium channels in cloned mouse neuroblastoma cell lines. Brain Res. 445, 157–159.

    Article  PubMed  CAS  Google Scholar 

  • Mao J., Price D. D., Phillips L. L., Lu J., and Mayer D. J. (1995) Increases in protein kinase C gamma immunoreactivity in the spinal cord of rats associated with tolerance to the analgesic effects of morphine. Brain Res. 677, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Mauborgne A., Lutz O., Legrand J.-C., Hamon M., and Cesslin F. (1987) Opposite effects of delta and mu opioid receptor agonists on the in vitro release of substance P-like material from the rat spinal cord. J. Neurochem. 48, 529–537.

    Article  PubMed  CAS  Google Scholar 

  • Mayer D. J., Mao J., and Price D. D. (1995) The development of tolerance and dependence is associated with translocation of protein kinase C. Pain 61, 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Neal M. J., Paterson S. J., and Cunningham J. R. (1994) Enhancement of retinal acetylcholine release by DAMGO: possibly a direct opioid receptor-mediated excitatory effect. Br. J. Pharmacol. 113, 789–794.

    PubMed  CAS  Google Scholar 

  • North R. A. (1989) Drug receptors and the inhibition of nerve cells. Br. J. Pharmacol. 98, 13–28.

    PubMed  CAS  Google Scholar 

  • Olianas M. C. and Onali P. (1993) Characterization of opioid receptors mediating stimulation of adenylate cyclase activity in rat olfactory bulb. Mol. Pharmacol. 42, 109–115.

    Google Scholar 

  • Olianas M. C. and Onali P. (1999) Mediation by G protein βγ subunits of the opioid stimulation of adenylyl cyclase activity in rat olfactory bulb. Biochem. J. Pharmacol. 57, 649–652.

    Article  CAS  Google Scholar 

  • Prather P. L., Loh H. H., and Law P. Y. (1994) Interaction of δ-opioid receptors with multiple G proteins: a non-relationship between agonist potency to inhibit adenylyl cyclase and to activate G proteins. Mol. Pharmacol. 45, 997–1003.

    PubMed  CAS  Google Scholar 

  • Rivera M and Gintzler A. R. (1998) Differential effect of chronic morphine on mRNA encoding adenylyl cyclase isoforms: relevance to physiological sequela of tolerance/dependence. Mol. Brain Res. 54, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Roerig S. C., Loh H. H., and Law P. Y. (1992) Identification of three separate guanine nucleotide-binding proteins that interact with the delta-opioid receptor in NG108-15 neuroblastoma X glioma hybrid cells. Mol. Pharmacol. 41(5), 822–831.

    PubMed  CAS  Google Scholar 

  • Sarne Y., Gafni M., Fields A., and Keren O. (1996) Stimulatory effects of opioids on transmitter release and possible cellular mechanisms: overview and original results. (review). Neurochem. Res. 21, 1353–1361.

    Article  PubMed  CAS  Google Scholar 

  • Sharma S. K., Nirenberg M., and Klee W. A. (1975a) Morphine receptors as regulators of adenylate cyclase activity. Proc. Natl. Acad. Sci. USA 72, 590–594.

    Article  PubMed  CAS  Google Scholar 

  • Sharma S. K., Klee W. A., and Nirenberg M. (1975b) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Natl. Acad. Sci. USA 72, 3092–3096.

    Article  PubMed  CAS  Google Scholar 

  • Sharma S. K., Klee W. A., and Nirenberg M. (1977) Opiate-dependent modulation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 74(8), 3365–3369.

    Article  PubMed  CAS  Google Scholar 

  • Shen K.-F. and Crain S. M. (1989) Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res. 491, 227–242.

    Article  PubMed  CAS  Google Scholar 

  • Shen K.-F. and Crain S. M. (1990) Cholera toxin A blockade of opioid excitatory effects on sensory neuron action potentials indicates mediation by Gs-linked opioid receptors. Brain Res. 525, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Sim L. J., Selley D. E., Dworkin S. I., and Childers S. R. (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPgammaS autoradiography in rat brain. J. Neurosci. 16(8), 2684–2492.

    PubMed  CAS  Google Scholar 

  • Smart D., Smith G., and Lambert D. G. (1994) Mu-Opioid receptor stimulation of inositol (1,4,5)trisphosphate formation via a pertussis toxin-sensitive G protein. J. Neurochem. 62, 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  • Smart D., Smith G., and Lambert D. G. (1995) Muopioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening. Biochem. J. 305, 577–581.

    PubMed  CAS  Google Scholar 

  • Smart D. and Lambert D. G. (1996) delta-Opioids stimulate inositol 1,4,5-trisphosphate formation, and so mobilize Ca2+ from intracellular stores, in undifferentiated NG108-15 cells. J. Neurochem. 66, 1462–1467.

    Article  PubMed  CAS  Google Scholar 

  • Sunahara R. K., Dessauer C. W., and Gilman A. G. (1995) Complexity and diversity of mammalian adenylyl cyclases. Ann. Rev. Pharmacol. Toxicol. 36, 461–480.

    Article  Google Scholar 

  • Sweeny M. I., White T. D., and Sawynok J. (1989) Morphine, capsaicin and K+ release purines from capsaicin-sensitive primary afferent nerve terminals in the spinal cord. J. Pharmacol. Exp. Ther. 248, 447–454.

    Google Scholar 

  • Tallent M., Dichter M. A., Bell G. I., and Resine T. (1994) The cloned kappa opioid receptor couples to an N-type calcium current in undifferentiated PC-12 cells. Neuroscience 63, 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  • Tang W.-J. and Gilman A. G. (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254, 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Tang W.-J. and Gilman A. G. (1992) Adenylyl cyclases. Cell 70, 869–872.

    Article  PubMed  CAS  Google Scholar 

  • Tang T., Kiang J. G., and Cox B. M. (1994) Opioids acting through delta receptors elicit a transient increase in the intracellular free calcium concentration in dorsal root ganglion-neuroblastoma hybrid ND8-47 cells. J. Pharmacol. Exp. Ther. 270, 40–46.

    PubMed  CAS  Google Scholar 

  • Tsu R. C., Chan J. S. C., and Wong Y. H. (1995) Regulation of multiple effectors by the cloned delta-opioid receptor: stimulation of phospholipase C and type II adenylyl cyclase. J. Neurochem. 64, 2700–2707.

    Article  PubMed  CAS  Google Scholar 

  • Tsu R. C. and Wong Y. H. (1996) Gi-mediated stimulation of type II adenylyl cyclase is augmented by Gq-coupled receptor activation and phorbol ester treatment. J. Neurosci. 16(4), 1317–1323.

    PubMed  CAS  Google Scholar 

  • Wang L. and Gintzler A. R. (1994) Bimodal opioid regulation of cAMP formation: implications for positive and negative coupling of opiate receptors to adenylyl cyclase. J. Neurochem. 63, 1726–1730.

    Article  PubMed  CAS  Google Scholar 

  • Wang L. and Gintzler A. R. (1995) Morphine tolerance and physical dependence: reversal of opioid inhibition to enhancement of cAMP formation. J. Neurochem. 64(3), 1102–1106.

    Article  PubMed  CAS  Google Scholar 

  • Wang L., Medina V. M., Rivera M., and Gintzler A. R. (1996) Relevance of phosphorylation state to opioid responsiveness in opiate naive and tolerant/dependent tissue. Brain Res. 723, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Wang L. and Gintzler A. R. (1997) Altered μ-opiate receptor-G-protein signal transduction following chronic morphine exposure. J. Neurochem. 68(1), 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Watson P. A., Krupinski J., Kempinski A. M., and Frankenfiedl C. D. (1994) Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells. J. Biol. Chem. 269(46), 28,893–28,898.

    CAS  Google Scholar 

  • Xu H., Smolens I., and Gintzler A. R. (1989) Opioids can enhance and inhibit the electrically evoked release of methionine-enkephalin. Brain Res. 504, 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Xu H. and Gintzler A. R. (1992) Opioid enhancement of evoked [Met5]enkephalin release requires activation of cholinergic receptors: possible involvement of intracellular calcium. Proc. Natl. Acad. Sci. USA 89, 1978–1982.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M., Ikeda H., and Tabakoff B. (1996) μ-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase. Mol. Pharmacol. 50, 43–51.

    PubMed  CAS  Google Scholar 

  • Zimmermann G. and Taussig R. (1996) Protein kinase C alters the responsiveness of adenylyl cyclase to G protein α and βψ subunits. J. Biol. Chem. 271(43), 27,161–27,166.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Gintzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gintzler, A.R., Chakrabarti, S. Opioid tolerance and the emergence of new opioid receptor-coupled signaling. Mol Neurobiol 21, 21–33 (2000). https://doi.org/10.1385/MN:21:1-2:021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:21:1-2:021

Index Entries

Navigation