Skip to main content
Log in

VIP and peptides related to activity-dependent neurotrophic factor protect PC12 cells against oxidative stress

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oxidative stress is a common associative mechanism that is part of the pathogenesis of many neurodegenerative diseases. Vasoactive intestinal peptide (VIP) is a principal neuropeptide associated with normal development and aging. We have previously reported that VIP induced the secretion of proteins from glial cells, including the novel survival-promoter: activity-dependent neurotrophic factor (ADNF). ADNF-9, a nine amino acid peptide derived from ADNF, protects neurons from death caused by various toxins. In the present study, we examined the neuroprotective effect of VIP against oxidative stress in a pheochromocytoma cell line (PC12). In addition, a lipophilic derivative of VIP, Stearyl-Nle17-VIP (SNV), and two femtomolar-acting peptides: ADNF-9 and a 70% homologous peptide to ADNF-9, NAP were tested as well. PC12 cells were treated with 100 µM H2O2 for 24 h resulting in a reduction in cell survival to 35–50% as compared to controls. Addition of VIP or SNV prior and during the exposure to 100 µM H2O2 increased cell survival to 80–90% of control values. Culture treatment with ADNF-9 or NAP in the presence of 100 µM H2O2 increased cell survival to 75–80% of control values. Messenger RNA expression analysis revealed that incubation with VIP resulted in a twofold increase in VIP mRNA, whereas NAP treatment did not cause any change in VIP expression, implicating different mechanisms of action. Furthermore, addition of an ADNF-9 antibody prevented the ability of VIP to protect against oxidative stress, suggesting that VIP protection is partially mediated via an ADNF-like protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Behl C., Davis J. B., Lesley R., and Schubert D. (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Beni-Adani L., Gozes I., Cohen Y., Assaf Y., Steingart R. A., Brenneman D. E., et al. (2001) Reduced mortality and improved recovery after treatment with a femtomolar-acting peptide in a mouse model of closed head injury. J. Pharmacol. 296, 57–63.

    CAS  Google Scholar 

  • Brenneman D. E. and Eiden L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc. Natl. Acad. Sci. USA 83, 1159–1162.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Gozes I. (1996) A femtomolaracting neuroprotective peptide. J. Clin. Invest. 97, 2299–2307.

    PubMed  CAS  Google Scholar 

  • Brenneman D. E., Hauser J., Neale E., Rubinraut S., Fridkin M., Davidson A., and Gozes. I. (1998) Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides. J. Pharmacol. Exp. Therap. 285, 619–627.

    CAS  Google Scholar 

  • Davis J. B. (1996) Oxidative mechanisms in beta amyloid cytotoxicity. Neurodegeneration 5, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • De Erausquin G. A., Costa E., and Hanbauer, I. (1994) Calcium homeostasis, free radical formation, and trophic factor dependence mechanisms in Parkinson’s disease. Pharmacol. Rev. 46, 467–482.

    PubMed  Google Scholar 

  • Delgado M., Munoz-Elias E. J., Kan Y., Gozes I., Fridkin M., Brenneman D. E., et al. (1998) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit tumor necro sis factor alpha transcriptional activation by regulating nuclear factor-κB and cAMP response element-binding protein/c-Jun. J. Biol. Chem. 273, 31,427–31,436.

    Article  CAS  Google Scholar 

  • Delgado M. and Ganea D. (2000) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit T cell-mediated cytotoxicity by inhibiting Fas ligand expression. J. Immunol. 165, 114–123.

    PubMed  CAS  Google Scholar 

  • Eschelbach A., Hunziker A., and Klimaschewski L. (1998) Differential display PCR reveals induction of immediate early genes by vasoactive intestinal peptide in PC12 cells. Ann. NY Acad. Sci. 11, 181–188.

    Article  Google Scholar 

  • Glazner G. W., Camandola S., and Mattson M. P. (2000) Nuclear factor-kappaB mediates the cell survival-promoting action of activity-dependent neurotrophic factor peptide-9. J. Neurochem. 75, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Glazner G. W., Boland A., Dresse A. E., Brenneman D. E., Gozes I., and Mattson M. P. (1999) Activity-dependent neurotrophic factor peptide (ADNF9) protects neurons against oxidative stress-induced death. J. Neurochem. 6, 2341–2347.

    Article  Google Scholar 

  • Gozes I., Shani Y., and Rostene W. H. (1987) Developmental expression of the VIP-gene in brain and intestine. Brain Res. 388, 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Reshef A., Salah D., Rubinraut S., and Fridkin M. (1994) Stearyl- Norleucine-VIP: a novel VIP analogue for noninvasive impotence treatment. Endocrinology 134, 2121–2125.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman. D. E. (1996) Activity-dependent neurotrophic factor (ADNF): An extracellular neuroprotective chaperonin? J. Mol. Neurosci. 7, 235–244.

    PubMed  CAS  Google Scholar 

  • Gozes I., Bachar M., Bardea A., Davidson A., Rubinraut S., Fridkin M., and Giladi E. (1997a) Protection against developmental retardation in apolipoprotein E-deficient mice by a fatty neuropeptide: implication for early treatment of Alzheimer’s disease. J. Neurobiol. 33, 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Davidson A., Gozes Y., Mascolo R., Barth R., Warren D., et al. (1997b) Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. Dev. Brain Res. 99, 167–175.

    Article  CAS  Google Scholar 

  • Gozes I., Bassan M., Zamostiano R., Pinhasov A., Davidson A., Giladi E., et al. (1999a) A novel signaling molecule for neuropeptide action: activity-dependent neuroprotective protein. Ann. NY Acad. Sci. 897, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Perl O., Giladi E., Davidson A., Ashur-Fabian O., Rubinraut S., and Fridkin M. (1999b) Mapping the active site in vasoactive intestinal peptide to a core of four amino acids: neuroprotective drug design. Proc. Natl. Acad. Sci. USA 96, 4143–4148.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Giladi E., Pinhasov A., Bardea A., and Brenneman D. E. (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther. 293, 1091–1098.

    PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (2000) A new concept in the pharmacology of neuroprotection. J. Mol. Neurosci. 14, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Gressens P., Hill J. M., Gozes I., Fridkin M., and Brenneman D. E. (1993) Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 362, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Gressens P. Marret S., Hill J. M., Brenneman D. E., Gozes I., Fridkin M., and Evrard P. (1997) Vasoactive intestinal peptide prevents excitotoxic death in the murine developing brain. J. Clin. Invest. 100, 390–397.

    PubMed  CAS  Google Scholar 

  • Gressens P., Marret S., Bodenant C., Schwendimann L., and Evrard P. (1999) Activity-dependent neurotrophic factor-14 requires protein kinase C and mitogen-associated protein kinase kinase activation to protect the developing mouse brain against excitotoxicity. J. Mol. Neurosci. 13, 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W., Ware C. B., et al. (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.

    Article  PubMed  CAS  Google Scholar 

  • Guo Z. H. and Mattson M. P. (2000) Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb Cortex. 10, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Guyton K. Z., Liu U., Gorospe M., Xu Q., and Holbrook N. J. (1996) Activation of mitogenic activated protein Kinase by H2O2. J. Biol. Chem. 271, 4138–4142.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Ivins K. J., Ivins J. K., Sharp J. P., and Cotman C. W. (1999) Multiple pathway of apoptosis in PC12 cells. J. Biol. Chem. 274, 2107–2112.

    Article  PubMed  CAS  Google Scholar 

  • Jenner P. and Olsnow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, S72-S84.

    PubMed  CAS  Google Scholar 

  • Kim W. K., Kan Y., Ganea D., Hart R. P., Gozes I., and Jonakait G. M. (2000) Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J. Neurosci. 20, 3622–3630.

    PubMed  CAS  Google Scholar 

  • Klimaschewski L., Unsicker K., and Heym, C. (1995) Vasoactive intestinal peptide but not galanin promotes survival of neonatal rat sympathetic neurons and neurite outgrowth of PC12 cells. Neurosci. Lett. 195: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Sherki Y., Melamed E., Fridkin M., Brenneman D. E., and Gozes I. (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res. 854, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Olanow C. W. (1993) A scientific rationale for protective therapy in Parkinson’s disease. J. Neural. Trans. Gen. Sect. 91, 161–180.

    Article  CAS  Google Scholar 

  • Pappolla M. A., Chyan Y. J., Omar R. A., Hsiao K., Perry G., Smith M. A., and Bozner P. (1998) Evidence of oxidative stress and in vivo neurotoxicity of β-amyloid in transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 152, 871–877.

    PubMed  CAS  Google Scholar 

  • Park D. S., Stefanis, L., Yan C. Y. I., and Farinelli S. E. (1996) Ordering the cell death pathway. J. Biol. Chem. 271, 21,898–21,905.

    CAS  Google Scholar 

  • Raya S. A., Trembovler V., Shohami E., and Lazarovici P. (1993) Cytolysins increase intracellular calcium and induce eicosanoids release by pheochromocytoma PC12 cell cultures. Nat. Toxins 1, 263–270.

    Article  PubMed  CAS  Google Scholar 

  • Said S. I. (1996) Editorial: Molecules that protect: the defense of neurons and other cells. J. Clin. Invest. 97, 2163–2164.

    Article  PubMed  CAS  Google Scholar 

  • Sigalov E., Fridkin M., Brenneman D.E., and Gozes I. (2000) VIP-Related protection against iodoacetate in pheochromocytoma (PC12) cells. A model for ischemic/hypoxic injury. J. Mol. Neurosci. 15, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. A., Hirai K. Hsiao K., Poppolla M. A., Harris-Peggy L. R., Siedlak S. L., et al. (1998) Amyloid beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70, 2212–2215.

    Article  PubMed  CAS  Google Scholar 

  • Solomon B., Koppel R., Frankel D., and Hanan-Aharon E. (1997) Disaggregation of Alzheimer-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA 94, 4109–4112.

    Article  PubMed  CAS  Google Scholar 

  • Tsukada T., Fukushoma M., Takebe H., and Nakai Y. (1995) Vasoactive intestinal peptide gene expression in the rat pheochromocytoma cell line PC12. Mol. Cell. Endo. 107, 231–239.

    Article  CAS  Google Scholar 

  • Vossler M. R., Yao H., York R. D., Pan M. G., Rim C. S., and Stork P. J. (1997) cAMP activates MAP kinase and Elk-1v through a B-raf and Rap-1 dependent pathway. Cell 89, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • White D. M., Walker S., Brenneman D. E., and Gozes I. (2000) CREB contributes to the increased neurite outgrowth of sensory neurons induced by vasoactive intestinal polypeptide and activity-dependent neurotrophic factor. Brain Res. 868, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Zamostiano R., Pinhasov A., Bassan M., Perl O., Steingart R. A., Atlas R., Brenneman D. E., and Gozes I. (1999) A femtomolar-acting neuroprotective peptide induces increased levels of heat shock protein 60 in rat cortical neurons: a potential neuroprotective mechanism. Neurosci. Lett. 264, 9–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steingart, R.A., Solomon, B., Brenneman, D.E. et al. VIP and peptides related to activity-dependent neurotrophic factor protect PC12 cells against oxidative stress. J Mol Neurosci 15, 137–145 (2000). https://doi.org/10.1385/JMN:15:3:137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:15:3:137

Index Entries

Navigation