Skip to main content
Log in

Deacylation and reacylation of neural membrane glycerophospholipids

A matter of life and death

  • Minireview
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The deacylation-reacylation cycle is an important mechanism responsible for the introduction of polyunsaturated fatty acids into neural membrane glycerophospholipids. It involves four enzymes, namely acyl-CoA synthetase, acyl-CoA hydrolase, acyl-CoA: lysophospholipid acyltransferase, and phospholipase A2. All of these enzymes have been purified and characterized from brain tissue. Under normal conditions, the stimulation of neural membrane receptors by neurotransmitters and growth factors results in the release of arachidonic acid from neural membrane glycerophospholipids. The released arachidonic acid acts as a second messenger itself. It can be further metabolized to eicosanoids, a group of second messengers involved in a variety of neurochemical functions. A lysophospholipid, the second product of reactions catalyzed by phospholipase A2, is rapidly acylated with acyl-CoA, resulting in the maintenance of the normal and essential neural membrane glycerophospholipid composition. However, under pathological situations (ischemia), the overstimulation of phospholipase A2 results in a rapid generation and accumulation of free fatty acids including arachidonic acid, eicosanoids, and lipid peroxides. This results in neural inflammation, oxidative stress, and neurodegeneration. In neural membranes, the deacylation-reacylation cycle maintains a balance between free and esterified fatty acids, resulting in low levels of arachidonic acid and lysophospholipids. This is necessary for not only normal membrane integrity and function, but also for the optimal activity of the membrane-bound enzymes, receptors, and ion channels involved in normal signal-transduction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe T., Fujino T., Fukuyama R., Minoshima S., Shimizu N., Toh H., et al. (1992) Human long-chain acyl-CoA synthetase: structure and chromosomal location. J. Biochem. (Tokyo) 111, 123–128.

    CAS  Google Scholar 

  • Anderson A. D. and Erwin V. G. (1971) Brain acyl-coenzyme A hydrolase: distribution, purification and properties. J. Neurochem. 18, 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  • Balsinde J., Bianco I. D., Ackermann E. J., Conde-Frieboes K., and Dennis E. A. (1995) Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc. Natl. Acad. Sci. USA 92, 8527–8531.

    Article  PubMed  CAS  Google Scholar 

  • Brophy P. J. and Vance D. E. (1976) The synthesis and hydrolysis of long-chain fatty acyl-coenzyme A thioesters by soluble and microsomal fractions from the brain of the developing rat. Biochem. J. 160, 247–251.

    PubMed  CAS  Google Scholar 

  • Cao Y., Traer E., Zimmerman G. A., McIntyre T. M., and Prescott S. M. (1998) Cloning, expression, and chromosomal localization of human long-chain fatty acid-CoA ligase 4 (FACL4). Genomics 49, 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Clark J. D., Schievella A. R., Nalefski E. A., and Lin L.-L. (1995) Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 12, 83–117.

    Article  PubMed  CAS  Google Scholar 

  • Corbin D. R. and Sun G. Y. (1978) Characterization of the enzymic transfer of arachidonoyl groups to 1-acyl-phosphoglycerides in mouse synaptosome fraction. J. Neurochem. 30, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Deeney J. T., Tornheim K., Korchak H. M., Prentki M., and Corkey B. E. (1992) Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic β-cells. J. Biol. Chem. 267, 19,840–19,845.

    CAS  Google Scholar 

  • Deka N., Sun G. Y., and MacQuarrie R. (1986) Purification and properties of acyl-CoA: 1-acyl-snglycero-3-phosphocholine-O-acyltransferase from bovine brain microsomes. Arch. Biochem. Biophys. 246, 554–563.

    Article  PubMed  CAS  Google Scholar 

  • Dumuis A., Sebben M., Haynes L., Pin J.-P., and Bockaert J. (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336, 68–70.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Pendley C. E., II, Taylor W. A., and Horrocks L. A. (1985) Studies on diacylglycerol lipases and lysophospholipases of bovine brain., in Phospholipids in the Nervous System, Vol. II: Physiological Role (Horrocks L. A., Kanfer J. N., and Porcellati G., eds.), Raven Press, New York, NY, pp. 179–192.

    Google Scholar 

  • Farooqui A. A., Hirashima Y., and Horrocks L. A. (1992) Brain phospholipases and their role in signal transduction. Adv. Exp. Med. Biol. 318, 11–25.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Intl. Rev. Neurobiol. 36, 267–323.

    CAS  Google Scholar 

  • Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997) Phospholipase A2 and its role in brain tissue. J. Neurochem. 69, 889–901.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1998) Plasmalogen-selective phospholipase A2 and its involvement in Alzheimer’s disease. Biochem. Soc. Trans. 26, 243–246.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Litsky M. L., Farooqui T., and Horrocks L. A. (1999) Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res. Bull. 49, 139–153.

    Article  PubMed  CAS  Google Scholar 

  • Farrooqui A. A., Horrocks L. A., and Farroqui T. (2000a) Neural membrane glycerophospholipids: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids, (in press).

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000b) Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist (in press).

  • Fujino T. and Yamamoto T. (1992) Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain. J. Biochem. (Tokyo) 111, 197–203.

    CAS  Google Scholar 

  • Glick B. S. and Rothman J. E. (1987) Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326, 309–312.

    Article  PubMed  CAS  Google Scholar 

  • Grand R. J. (1989) Acylation of viral and eukaryotic proteins. Biochem. J. 258, 625–638.

    PubMed  CAS  Google Scholar 

  • Hashmi M., Stanley W., and Singh I. (1986) Lignoceroyl-CoASH ligase: enzyme defect in fatty acid beta-oxidation system in X-linked childhood adrenoleukodystrophy. FEBS Lett. 196, 247–250.

    Article  PubMed  Google Scholar 

  • Hayakawa M., Ishida N., Takeuchi K., Shibamoto S., Hori T., Oku N., et al. (1993) Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J. Biochem. 268, 11,290–11,295.

    CAS  Google Scholar 

  • Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992) Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59, 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Yeo Y. K. (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40, 211–225.

    Article  PubMed  CAS  Google Scholar 

  • Huang W. H., Wang Y., and Askari A. (1989) Mechanism of the control of (Na+ + K+)-ATPase by long-chain acyl coenzyme A. J. Biol. Chem. 264, 2605–2608.

    PubMed  CAS  Google Scholar 

  • Ikeda M., Yoshida S., Busto R., Santiso M., and Ginsberg M. D. (1986) Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J. Neurochem. 47, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Jayadev S., Hayter H. L., Andrieu N., Gamard C. J., Liu B., Balu R., et al. (1997) Phospholipase A2 is necessary for tumor necrosis factor α-induced ceramide generation in L929 cells. J. Biol. Chem. 272, 17,196–17,203.

    Article  CAS  Google Scholar 

  • Jones C. R., Arai T., and Rapoport S. I. (1997) Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 22, 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson J. J., Renieri A., Gallagher P. G., Kashtan C. E., Cherniske E. M., Bruttini M., et al. (1998) Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis: a new X linked contiguous gene deletion syndrome? J. Med. Genet. 35, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Katsuki H. and Okuda S. (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46, 607–636.

    Article  PubMed  CAS  Google Scholar 

  • Lands W. E. M. (1960) Metabolism of glycerolipids. J. Biol. Chem. 235, 2233–2237.

    PubMed  CAS  Google Scholar 

  • Lawrence J. B., Moreau P., Cassagne C., and Morre D. J. (1994) Acyl transfer reactions associated with cis Golgi apparatus of rat liver. Biochim. Biophys. Acta 1210, 146–150.

    PubMed  CAS  Google Scholar 

  • Li Q. L., Yamamoto N., Inoue A., and Morisawa S. (1990) Fatty acyl-CoAs are potent inhibitors of the nuclear thyroid hormone receptor in vitro. J. Biochem. (Tokyo) 107, 699–702.

    CAS  Google Scholar 

  • Lin A. Y., Sun G. Y., and MacQuarrie R. (1984) Partial purification and properties of long-chain acyl-CoA hydrolase from rat brain cytosol. Neurochem. Res. 9, 1571–1591.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald J. I. S. and Sprecher H. (1991) Phospholipid fatty acid remodeling in mammalian cells. Biochim. Biophys. Acta 1084, 105–121.

    PubMed  CAS  Google Scholar 

  • Mandrup S., Hummel R., Ravn S., Jensen G., Andreasen P. H., Gregersen N., et al. (1992) Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. A typical housekeeping gene family. J. Mol. Biol. 228, 1011–1022.

    Article  PubMed  CAS  Google Scholar 

  • McLean L. R., Hagaman K. A., and Davidson W. S. (1993) Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28, 505–509.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama T., Urade R., and Kito M. (1999) Purification and characterization of diacylglycerol lipase from human platelets. J. Biochem. (Tokyo) 125, 1077–1085.

    CAS  Google Scholar 

  • Ojima A., Nakagawa Y., Sugiura T., Masuzawa Y., and Waku K. (1987) Selective transacylation of 1-O-alkylglycerophosphoethanolamine by docosahexaenoate and arachidonate in rat brain microsomes. J. Neurochem. 48, 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  • Ong W. Y., Horrocks L. A., and Farooqui A. A. (1999) Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J. Brain Res. 39, 391–400.

    Google Scholar 

  • Pete M. J. and Exton J. H. (1996) Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J. Biol. Chem. 271, 18,114–18,121.

    CAS  Google Scholar 

  • Piccini M., Vitelli F., Bruttini M., Pober B. R., Jonsson J. J., Villanova M., et al. (1998) FACL4, a new gene encoding long-chain acyl-CoA synthetase 4, is deleted in a family with Alport syndrome, elliptocytosis, and mental retardation. Genomics 47, 350–358.

    Article  PubMed  CAS  Google Scholar 

  • Pirianov G., Danielsson C., Carlberg C., James S. Y., and Colston K. W. (1999) Potentiation by vitamin D analogs of TNFα and ceramide-induced apoptosis in MCF-7 cells is associated with activation of cytosolic phospholipase A2. Cell Death Differ. 6, 890–901.

    Article  PubMed  CAS  Google Scholar 

  • Prentki M. and Corkey B. E. (1996) Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45, 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Ramanadham S., Hsu F. F., Bohrer A., Ma Z. M., and Turk J. (1999) Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-inducecd arachidonic acid release in pancreatic islets and insulinoma cells. J. Biol. Chem. 274, 13,915–13,927.

    Article  CAS  Google Scholar 

  • Rapoport S. I. (1999) In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24, 1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Reddy P. V. and Bazan N. G. (1983) Kinetic properties of arachidonoyl-coenzyme A synthetase in rat brain microsomes. Arch. Biochem. Biophys. 226, 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Reddy T. S. and Bazan N. G. (1984) Long-chain acyl coenzyme A synthetase activity during the post-natal development of the mouse brain. Intl. J. Devel. Neurosci. 2, 447–450.

    Article  CAS  Google Scholar 

  • Reddy T. S. and Bazan N. G. (1987) Arachidonic acid, stearic acid, and diacylglycerol accumulation correlates with the loss of phosphatidylinositol 4,5-bisphosphate in cerebrum 2 seconds after electroconvulsive shock: complete reversion of changes 5 minutes after stimulation. J. Neurosci. Res. 18, 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Reddy T. S., Sprecher H., and Bazan N. G. (1984) Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate. Eur. J. Biochem. 145, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Rehncrona S., Westerberg E., Akesson B., and Siesjö B. K. (1982) Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J. Neurochem. 38, 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds L. J., Hughes L. L., Louis A. I., Kramer R. M., and Dennis E. A. (1993) Metalion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim. Biophys. Acta 1167, 272–280.

    PubMed  CAS  Google Scholar 

  • Ross B. M., Kim D. K., Bonventre J. V., and Kish S. J. (1995) Characterization of a novel phospholipase A2 activity in human brain. J. Neurochem. 64, 2213–2221.

    Article  PubMed  CAS  Google Scholar 

  • Ross B. M. and Kish S. J. (1994) Characterization of lysophospholipid metabolizing enzymes in human brain. J. Neurochem. 63, 1839–1848.

    Article  PubMed  CAS  Google Scholar 

  • Ross B. M., Moszczynska A., Erlich J., and Kish S. J. (1998) Phospholipid-metabolizing enzymes in Alzheimer’s disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J. Neurochem. 70, 786–793.

    Article  PubMed  CAS  Google Scholar 

  • Singh I., Bhuskan A. S., Relan N. K., and Hashimoto T. (1988) Acyl-CoAligase from rat brain microsome: an immunochemical study. Biochim. Biophys. Acta 963, 509–514.

    PubMed  CAS  Google Scholar 

  • Stephenson D., Rash K., Smalstig B., Roberts E., Johnstone E., Sharp J., et al. (1999) Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27, 110–128.

    Article  PubMed  CAS  Google Scholar 

  • Sun G. Y. and MacQuarrie R. A. (1989) Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann. NY Acad. Sci. 559, 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Sun G. Y. and Su K. L. (1979) Metabolism of arachidonoyl phosphoglycerides in mouse brain sucellular fractions. J. Neurochem. 32, 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  • Surette M. E., Fonteh A. N., Bernatchez C., and Chilton F. H. (1999) Perturbations in the control of cellular arachidonic acid levels block cell growth and induce apoptosis in HL-60 cells. Carcinogenesis 20, 757–763.

    Article  PubMed  CAS  Google Scholar 

  • Surette M. E., Winkler J. D., Fonteh A. N., and Chilton F. H. (1996) Relationship between arachidonate-phospholipid remodeling and apoptosis. Biochemistry 35, 9187–9196.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H., Kawarabayasi Y., Kondo J., Abe T., Nishikawa K., Kimura S., et al. (1990) Structure and regulation of rat long-chain acyl-CoA synthetase. J. Biol. Chem. 265, 8681–8685.

    PubMed  CAS  Google Scholar 

  • Tomoda H., Igarashi K., Cyong J. C., and Omura S. (1991) Evidence for an essential role of long chain acyl-CoA synthetase in animal cell proliferation. Inhibition of long chain acyl-CoA synthetase by triacsins caused inhibition of Raji cell proliferation. J. Biol. Chem. 266, 4214–4219.

    PubMed  CAS  Google Scholar 

  • Tone O., Miller J. C., Bell J. M., and Rapoport S. I. (1987) Regional cerebral palmitate incorporation following transient bilateral carotid occlusion in awake gerbils. Stroke 18, 1120–1127.

    PubMed  CAS  Google Scholar 

  • van Kuijk F. J. G. M., Sevanian A., Handelman G. J., and Dratz E. A. (1987) A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem. Sci. 12, 3 1–34.

    Google Scholar 

  • Voelkel-Johnson C., Thorne T. E., and Laster S. M. (1996) Susceptibility to TNF in the presence of inhibitors of transcription or translation is dependent on the activity of cytosolic phospholipase A2 in human melanoma tumor cells. J. Immunol. 156, 201–207.

    PubMed  CAS  Google Scholar 

  • Wakabayashi S., Freed L. M., Bell J. M., and Rapoport S. I. (1994) In vivo cerebral incorporation of radio-labeled fatty acids after acute unilateral orbital enucleation in adult hooded Long-Evans rats. J. Cereb. Blood Flow Metab. 14, 312–323.

    PubMed  CAS  Google Scholar 

  • Washizaki K., Smith Q. R., Rapoport S. I., and Purdon A. D. (1994) Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat. J. Neurochem. 63, 727–736.

    Article  PubMed  CAS  Google Scholar 

  • Weltzien H. U. (1979) Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 559, 259–287.

    PubMed  CAS  Google Scholar 

  • Wissing D., Mouritzen H., Egeblad M., Poirier G. G., and Jäättelä M. (1997) Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl. Acad. Sci. USA 94, 5073–5077.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A., Sugiura T., and Waku K. (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J. Biochem. (Tokyo) 122, 1–16.

    CAS  Google Scholar 

  • Yang H. C., Mosior M., Ni B., and Dennis E. A. (1999) Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J. Neurochem. 73, 1278–1287.

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara Y. and Watanabe Y. (1990) Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem. Biophys. Res. Commun. 170, 484–490.

    Article  PubMed  CAS  Google Scholar 

  • Zaleska M. M. and Wilson D. F. (1989) Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J. Neurochem. 52, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Zaleska M. M. and Wilson D. F. (1992) Effect of hydroperoxy fatty acids on acylation and deacylation of arachidonoyl groups in synaptic phospholipids. J. Neurochem. 58, 107–115.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd A. Horrocks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqui, A.A., Horrocks, L.A. & Farooqui, T. Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14, 123–135 (2000). https://doi.org/10.1385/JMN:14:3:123

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:14:3:123

Index Entries

Navigation