Skip to main content
Log in

The molecular mechanisms that control function and death of effector CD4+ T cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

This review features two areas of our research interests. First, our laboratory is interested in elucidating the molecular mechanisms that control generation, effector function, and fate of TH1 cells during inflammatory responses. We have been particularly interested in the role of the growth arrest and DNA damage-inducible protein 45 (GADD45) gene family in TH1-mediated immune responses. We and others have shown that, in TH1 cells, Gadd45b and Gadd45g are induced by TCR signaling or IL-12 and IL-18. Gadd45b and Gadd45g are very important for the activation of p38 MAP kinases in TH1 cells and for effector functions of TH1 cells. We have found that deletion of Gadd45b and Gadd45g genes in mice results in a drastically reduced number of TH1 cells against Listeria monocytogenes. The critical role of Gadd45b and Gadd45g in TH1 responses in this acute infectious model has led us to hypothesize that they promote TH1-mediated autoimmune diseases. We therefore decided to test this hypothesis in experimental allergic encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Expecting low numbers of TH1 cells, we were surprised to see that Gadd45b deletion resulted in exacerbated chronic phase of EAE. In contrast to the reduction of TH1 cells we saw in acute L. monocytogenes infection, during the chronic phase of EAE we observed increased TH1 cells in the inflamed CNS when Gadd45b was deleted. Gadd45b deletion also resulted in enlarged spleens in older mice. Gadd45b/Gadd45g double-deficiency further aggravated this phenotype and resulted in greatly enlarged spleens in older mice compared with Gadd45b single deletion. The enlargement of spleens was due to the accumulation of CD4+ T cells with an activated phenotype and B cells. In addition, we have found that Gadd45b and Gadd45g inhibit proliferation and promote apoptosis of activated CD4+ T cells. Therefore, Gadd45b and Gadd45g play a critical role as a molecular “double-edged sword” in TH1-type immune responses to ensure a prompt, robust but self-limiting TH1 response. The second area of research in our laboratory focuses on the role of autophagy in T cells. We have recently discovered that autophagy is induced in TH1 and TH2 cells. There are more effector TH2 cells than TH1 cells that undergo autophagy. We have used RNAi strategy to “knockdown” autophagy in TH2 cell lines and found that autophagy is required for growth factor-withdrawal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260:547–549.

    Article  PubMed  CAS  Google Scholar 

  2. Lu B, Zagouras P, Fischer JE, Lu J, Li B, Flavell RA: Kinetic analysis of genomewide gene expression reveals molecule circuitries that control T cell activation and TH1/2 differentiation. Proc Natl Acad Sci USA 2004;101:3023–3028.

    Article  PubMed  CAS  Google Scholar 

  3. Szabo SJ, Dighe AS, Gubler U, Murphy KM: Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 1997;185:817–824.

    Article  PubMed  CAS  Google Scholar 

  4. Lu B, Yu H, Chow C, et al: GADD45gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 2001;14:583–590.

    Article  PubMed  CAS  Google Scholar 

  5. Lu B, Ferrandino AF, Flavell RA: Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat Immunol 2004;5:38–44.

    Article  PubMed  CAS  Google Scholar 

  6. Liu L, Tran E, Zhao Y, Huang Y, Flavell R, Lu B: Gadd45 beta and Gadd45 gamma are critical for regulating autoimmunity. J Exp Med 2005;202:1341–1347.

    Article  PubMed  CAS  Google Scholar 

  7. Rogge L, Bianchi E, Biffi M, et al: Transcript imaging of the development of human T helper cells using oligonucleotide arrays. Nat Genet 2000;25:96–101.

    Article  PubMed  CAS  Google Scholar 

  8. Dong C, Davis RJ, Flavell RA: MAP kinases in the immune response. Annu Rev Immunol 2002;20:55–72.

    Article  PubMed  CAS  Google Scholar 

  9. Rincon M, Enslen H, Raingeaud J, et al: Interferon-gamma expression by Th1. effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J 1998;17:2817–2829.

    Article  PubMed  CAS  Google Scholar 

  10. Hubank M, Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 1994;22:5640–5648.

    Article  PubMed  CAS  Google Scholar 

  11. Zheng W, Flavell RA: The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89:587–596.

    Article  PubMed  CAS  Google Scholar 

  12. Li B, Yu H, Zheng W, et al: Role of the guanosine triphosphatase Rac2 in T helper 1 cell differentiation. Science 2000;288:2219–2222.

    Article  PubMed  CAS  Google Scholar 

  13. Takekawa M, Saito H: A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 1998;95:521–530.

    Article  PubMed  CAS  Google Scholar 

  14. Yang J, Zhu H, Murphy TL, Ouyang W, Murphy KM: IL-18-stimulated GADD45 beta required in cytokine-induced, but not TCR-induced. IFN-gamma production. Nat Immunol 2001;2:157–164.

    Article  PubMed  CAS  Google Scholar 

  15. Lu HT, Yang DD, Wysk M, et al: Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J 1999;18:1845–1857.

    Article  PubMed  CAS  Google Scholar 

  16. Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA: Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 1995;11:1675–1683.

    PubMed  CAS  Google Scholar 

  17. Wang XW, Zhan Q, Coursen JD, et al: GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 1999;96:3706–3711.

    Article  PubMed  CAS  Google Scholar 

  18. Bulavin DV, Higashimoto Y, Popoff IJ, et al: Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001;411:102–107.

    Article  PubMed  CAS  Google Scholar 

  19. Tsujimoto Y, Shimizu S: Another way to die: autophagic programmed cell death. Cell Death Differ 2005:12(Suppl 2):1528–1534.

    Article  PubMed  CAS  Google Scholar 

  20. Kuida K, Haydar TF, Kuan CY, et al: Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94:325–337.

    Article  PubMed  CAS  Google Scholar 

  21. Ohsumi Y: Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001;2:211–216.

    Article  PubMed  CAS  Google Scholar 

  22. Levine B, Klionsky DJ: Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6:463–477.

    Article  PubMed  CAS  Google Scholar 

  23. Kuma A, Hatano M, Matsui M, et al: The role of autophagy during the early neonatal starvation period. Nature 2004;432:1032–1036.

    Article  PubMed  CAS  Google Scholar 

  24. Kamada Y, Sekito T, Ohsumi Y: Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 2004;279:73–84.

    PubMed  CAS  Google Scholar 

  25. Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC: Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 2005;10:10.

    Google Scholar 

  26. Elmore SP, Qian T, Grissom SF, Lemasters JJ: The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001;15:2286–2287.

    PubMed  CAS  Google Scholar 

  27. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C: Escape of intracellular Shigella from autophagy. Science 2005;307:727–731.

    Article  PubMed  CAS  Google Scholar 

  28. Nakagawa I, Amano A, Mizushima N, et al: Autophagy defends cells against invading group A Streptococcus. Science 2004;306:1037–1040.

    Article  PubMed  CAS  Google Scholar 

  29. Deretic V: Autophagy in innate and adaptive immunity. Trends Immunol 2005;11:11.

    Google Scholar 

  30. Clarke PG: Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 1990;181:195–213.

    CAS  Google Scholar 

  31. Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004;23:2891–2906.

    Article  PubMed  CAS  Google Scholar 

  32. Salvador JM, Hollander MC, Nguyen AT, et al: Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 2002;16:499–508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, B. The molecular mechanisms that control function and death of effector CD4+ T cells. Immunol Res 36, 275–282 (2006). https://doi.org/10.1385/IR:36:1:275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:36:1:275

Key Words

Navigation