Skip to main content
Log in

Effects of endomorphin-1 on open-field behavior and on the hypothalamic-pituitary-adrenal system

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The effects of endomorphin-1 (EM1) on behavioral responses and on the hypothalamic-pituitary-adrenal system were investigated in mice. Locomotor activity was measured in an “open-field” apparatus, with parallel recording of the numbers of rearings and groomings. Different doses of the peptide (250 ng to 5 µg) were administered to the animals intracerebroventricularly 30 min before the tests. EM1 caused significant increases in the locomotor activity and the number of rearings. The effect of EM1 on the basal corticosterone secretion was also investigated. At a dose of 5 µg, the peptide significantly increased plasma corticosterone level. The corticotropin-releasing hormone (CRH) antagonist α-helical CRH9–41, applied 30 min prior to EM1 administration, completely abolished the increases in both locomotion and the number of rearings and attenuated the corticosterone release evoked by EM1. These results suggest that the EM1-induced increases in locomotion and rearing activity as well as the pituitary-adrenal activation are mediated by CRH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldberg, I. E., Rossi, G. C., Letchworth, S. R., Mathis, J. P., Ryan-Moro, J., Leventhal, L., Su, W., Emmel, D., Bolan, E. A., and Pasternak, G. W. (1998). J. Pharmacol. Exp. Ther. 286, 1007–1013.

    PubMed  CAS  Google Scholar 

  2. Zadina, J. E., Hackler, L., Ge, L. J., and Kastin, A. J. (1997). Nature 386, 499–502.

    Article  PubMed  CAS  Google Scholar 

  3. Martin-Schild, S., Gerall, A. A., Kastin, A. J., and Zadina J. E. (1999). J. Comp. Neurol. 405, 450–471.

    Article  PubMed  CAS  Google Scholar 

  4. Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachaturian, H., and Walker, J. M. (1984). Ann. Rev. Neurosci. 7, 223–255.

    Article  PubMed  CAS  Google Scholar 

  5. Stone, L. S., Fairbanks, C. A., Laughlin, T. M., Nguyen, H. O., Bushy, T. M., Wessendorf, M. W., and Wilcox, G. L. (1997). Neuroreport 8, 3131–3135.

    Article  PubMed  CAS  Google Scholar 

  6. Przewlocka, B., Mika, J., Labuz, D., Toth, G., and Przewlocki, R. (1999). Eur. J. Pharmacol. 19, 189–196.

    Article  Google Scholar 

  7. Jalowiec, J. E., Panksepp, J., Zolovick, A. J., Najam, N., and Herman, B. H. (1981). Pharmacol. Biochem. Behav. 15, 477–484.

    Article  PubMed  CAS  Google Scholar 

  8. Motta, V. and Brandao, M. L. (1993). Pharmacol. Biochem. Behav. 44, 119–125.

    Article  PubMed  CAS  Google Scholar 

  9. Asakawa, A., Inui, A., Momose, K., Ueno, N., Fujino, M. A., and Kasuga, M. (1998). Neuroreport 13, 2265–2267.

    Article  Google Scholar 

  10. Champion, H. C., Zadina, J. E., Kastin, A. J., Hackler, L., Ge, L. J., and Kadowitz, P. J. (1997). Peptides 18, 1393–1397.

    Article  PubMed  CAS  Google Scholar 

  11. Feuerstein, G. and Faden, A. I. (1982). Life Sci. 31, 2197–2200.

    Article  PubMed  CAS  Google Scholar 

  12. Zadina, J. E., Martin-Schild, S., Gerall, A. A., Kastin, A. J., Hackler, L., Ge, L. J., and Zhang, X. (1999). Ann. NY Acad. Sci. 897, 136–144.

    Article  PubMed  CAS  Google Scholar 

  13. Sim, L. J., Liu, Q., Childers, S. R., and Selley, D. E. (1998). J. Neurochem. 70, 1567–1576.

    Article  PubMed  CAS  Google Scholar 

  14. Monory, K., Bourin, M. C., Spetea, M., Tömböly, C. Tóth, G., Matthes, H. W., Kieffer, B. L., Hanoune, J., and Borsodi, A. (2000). Eur. J. Neurosci. 12, 577–584.

    Article  PubMed  CAS  Google Scholar 

  15. Zadina, J. E., Harrison, L. M., Ge, L. J., Kastin, A. J., and Chang, S. L., (1994). J. Pharmacol. Exp. Ther. 270, 1086–1096.

    PubMed  CAS  Google Scholar 

  16. Sanchez-Blazquez, P., DeAntoio, I., Rodriguez-Diaz, M., and Garzon, J. (1999). Antisense Nucleic Acid Drug Dev. 9, 253–260.

    PubMed  CAS  Google Scholar 

  17. Burford, N. T., Tolbert, L. M., and Sadee, W. (1998). Eur. J. Pharmacol. 19, 123–126.

    Article  Google Scholar 

  18. Kuschinsky, K. and Hornykiewicz, O. (1974). Eur. J. Pharmacol. 26, 41–50.

    Article  PubMed  CAS  Google Scholar 

  19. Gibson, A., Ginsburg, M., Hall, M., and Hart, S. L. (1979). Br. J. Pharmacol. 65, 139–146.

    PubMed  CAS  Google Scholar 

  20. Meites, J., Bruni, J. F., Van Vugt, D. A., and Smith, A. F. (1979). Life Sci. 24, 1325–1336.

    Article  PubMed  CAS  Google Scholar 

  21. Mönnikes, H., Heymann-Mönnikes, I., and Tache, Y. (1992). Brain Res. 574, 70–76.

    Article  PubMed  Google Scholar 

  22. Babbini, M. and Davis, W. M. (1972). Br. J. Pharmacol. 46, 213–224.

    PubMed  CAS  Google Scholar 

  23. Ukai, M., Toyoshi, T., and Kameyama, T. (1989). Neuropharmacology 28, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  24. Mickley, G. A., Mulvihill, M. A., and Postler, M. A. (1990). Psychopharmacology-Berl. 101, 332–337.

    Article  PubMed  CAS  Google Scholar 

  25. Ukai, M. and Kameyama, T. (1985). Brain Res. 337, 352–356.

    Article  PubMed  CAS  Google Scholar 

  26. Katz, R. J. (1979). Int. J. Neurosci. 9, 213–215.

    Article  PubMed  CAS  Google Scholar 

  27. Isaacson, R. L., Danks, A. M., Brakkee, J., Schefman, K., and Gispen, W. H. (1988). Behav. Neural. Biol. 50, 37–45.

    Article  PubMed  CAS  Google Scholar 

  28. Pei, Q., Zetterstrom, T., Leslie, R. A., and Grahame-Smith, D. G. (1993). Eur. J. Pharmacol. 230, 63–68.

    Article  PubMed  CAS  Google Scholar 

  29. Jezova, D., Vigas, M., and Jurcovicova, J. (1982). Life Sci. 31, 307–314.

    Article  PubMed  CAS  Google Scholar 

  30. Morio, H., Tatsuno, I., Hirai, A., Tamura, Y., and Saito, Y. (1996) Brain Res. 741, 82–88.

    Article  PubMed  CAS  Google Scholar 

  31. Telegdy, G. (1987). Neuropeptides and brain function. Karger: Basel, Switzerland.

    Google Scholar 

  32. Pliska, V. (1994). Trends Pharmacol. 15, 178–181.

    Article  CAS  Google Scholar 

  33. Becker, C., Hamon, M., Cesselin, F., and Benoliel, J. J. (1999). Synapse 34, 47–54.

    Article  PubMed  CAS  Google Scholar 

  34. Veldhuis, H. D. and de Wied, D. (1984). Pharmacol. Biochem. Behav. 21, 707–713.

    Article  PubMed  CAS  Google Scholar 

  35. Tazi, A., Swerdlow N. R., LeMoal, M., Rivier, J., Vale, W., and Koob, G. F. (1987). Life Sci. 41, 41–49.

    Article  PubMed  CAS  Google Scholar 

  36. Tömböly, Cs., Spetea, M., Borsodi, A., and Tóth, G. (1999). Czech. J. Phys. 49/S1, 893–896.

    Google Scholar 

  37. Zenker, N. and Bernstein, D. E. (1958). J. Biol. Chem. 231, 695–701.

    PubMed  CAS  Google Scholar 

  38. Purves, H. D. and Sirett, N. E. (1965). Endocrinology 77, 366–374.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Telegdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujdosó, E., Jászberényi, M., Tömböly, C. et al. Effects of endomorphin-1 on open-field behavior and on the hypothalamic-pituitary-adrenal system. Endocr 14, 221–224 (2001). https://doi.org/10.1385/ENDO:14:2:221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:14:2:221

Key Words

Navigation