Skip to main content
Log in

Reduction of 13-deoxydoxorubicin and daunorubicinol anthraquinones by human carbonyl reductase

  • Original Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Carbonyl reductase (CR) catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of several carbonyls. Anthracyclines used to treat cancer are reduced by CR at the C13 carbonyl and the resulting metabolites are implicated in the cardiotoxicity associated with anthracycline therapy. CR also is believed to have a role in detoxifying quinones, raising the question whether CR catalyzes reduction of anthracycline quinones. Steadystate kinetic studies were done with several anthraquinone-containing compounds, including 13-deoxydoxorubicin and daunorubicinol, which lack the C13 carbonyl, thus unmasking the anthraquinone for study. kcat and kcat/Km values for 13-deoxydoxorubicin and daunorubicinol were nearly identical, indicating that that the efficiency of quinone reduction was unaffected by the differences at the C13 position. kcat and kcat/Km values were much smaller for the analogs than for the parent compounds, suggesting that the C13 carbonyl is preferred as a substrate over the quinone. CR also reduced structurally related quinone molecules with less favorable catalytic efficiency. Modeling studies with doxorubicin and carbonyl reductase revealed that methionine 234 sterically hinder the rings adjacent to the quinone, thus accounting for the lower catalytic efficiency. Reduction of the anthraquinones may further define the role of CR in anthracycline metabolism and may influence anthracycline cytotoxic and cardiotoxic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Young, R. C., Ozols, R. F., and Myers, C. E. (1981). The anthracycline antineoplastic drugs. N. Engl. J. Med. 305: 139–153.

    Article  PubMed  CAS  Google Scholar 

  2. Cortes, E. P., Lutman, G., Wanka, J., Wang, J. J., Pickren, J., Wallace, J., and Holland, J. F. (1975). Adriamycin (NSC-123127) cardiotoxicity: a clinico-pathologic correlation. Cancer Chemother. Rep. 6:215–255.

    Google Scholar 

  3. Minow, R. B. R. and Gottleeb, J. (1975). Adriamycin (NSC-123127) cardiomyopathy-an overview with determination of risk factors. Cancer Chemother. Rep. 6:195–210.

    Google Scholar 

  4. Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atyde, A. R., Sallan, S. E., and Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med. 324:808–815.

    Article  PubMed  CAS  Google Scholar 

  5. Olson, R. D. and Mushlin, P. S. (1990). Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J. 4: 3076–3086.

    PubMed  CAS  Google Scholar 

  6. Boucek, R. J. Jr., Buck, S. H., Scott, F., Oquist, N. L., Fleischer, S., and Olson, R. D. (1993). Anthracycline-induced tension in permeabilized cardiac fibers: Evidence for the activation of the calcium release channel of sarcoplasmic reiculum. J. Mol. Cell. Cardiol. 25:249–259.

    Article  PubMed  CAS  Google Scholar 

  7. Boucek, R. J. Jr., Olson, R. D., Brenner, D. E., Ogunbunmi, E. M., Inui, M., and Fleischer, S. (1987). The major metabolite of doxorubicin is a potent inhibitor membrane associated ion pumps: a correlative study of cardiac muscle with isolated membrane fractions. J. Biol. Chem. 262:15,851–15,856.

    CAS  Google Scholar 

  8. Olson, R. D., Mushlin, P. S., Brenner, D. E., Fleischer, S., Cusack, B. J., Chang, B. K., and Boucek, R. J. Jr. (1988). Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc. Natl. Acad. Sci. USA 85:3585–3589.

    Article  PubMed  CAS  Google Scholar 

  9. Cusack, B. J., Mushlin, P. S., Voulelis, L. D., Li, X., Boucek, R. J., Jr., and Olson, R. D. (1993). Daunorubicin-induced cardiac injury in the rabbit: a role for daunorubicinol?. Toxicol. Appl. Pharmacol. 118:177–185.

    Article  PubMed  CAS  Google Scholar 

  10. Mushlin, P. S., Cusack, B. J., Boucek, R. J. Jr., Andrejuk, T., Li, X., and Olson, R. D. (1993). Time-related increases in cardiac concentrations of doxorubicinol could interact with doxorubicin to depress myocardial contractile function. Br. J. Pharm. 110:975–982.

    CAS  Google Scholar 

  11. Minotti, G., Cavaliere, A. F., Mordente, A., Rossi, M., Schiavello, R., Zamparelli, R., and Possati, R. (1995). Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. J. Clin. Invest. 95:1595–1605.

    PubMed  CAS  Google Scholar 

  12. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., and Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56:185–229.

    Article  PubMed  CAS  Google Scholar 

  13. Olson, R. D., Li, X., Palade, P., Shadle, S. E., Mushlin, P. S., Gambliel, H. A., et al. (2000). Sarcoplasmic reticulum calcium release is stimulated and inhibited by daunorubicin and daunorubicinol. Toxicol. Appl. Pharmacol. 169: 168–176.

    Article  PubMed  CAS  Google Scholar 

  14. Stewardt, D. J., Grewaal, D., Green, R. M., Mikael, N., Goel, R., Montpetit, V. A. J., and Redmond, M. D. (1993). Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res. 13:1945–1952.

    Google Scholar 

  15. Pollakis, G., Goormaghtigh, E., and Ruysschaert, J.-M. (1983). Role of the quinone structure in the mitochondrial damage induced by antitumor anthracyclines: comparison of adriamycin and 5-iminodaunorubicin. FEBS Lett. 155: 267–272.

    Article  PubMed  CAS  Google Scholar 

  16. Doroshow, J. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res. 43:4543–4551.

    PubMed  CAS  Google Scholar 

  17. Davies, K. J. A. and Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria: 1. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem. 261:3060–3067.

    PubMed  CAS  Google Scholar 

  18. Shadle, S. E., Bammel, B. P., Cusack, B. J., Knighton, R. A., Olson, S. J., Mushlin, P. S., and Olson, R. D. (2000). Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Biochem. Pharmacol. 60:1435–1444.

    Article  PubMed  CAS  Google Scholar 

  19. Mordente, A., Meucci, E., Martorana, G. E., Giardina, B., and Minotti, G. (2001). Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life 52:83–88.

    PubMed  CAS  Google Scholar 

  20. Minotti, G., Cairo, G., and Monti, E. (1999). Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J. 13:199–211.

    PubMed  CAS  Google Scholar 

  21. Forrest, G. L. and Gonzalez, B. (2000). Carbonyl reductase. Chemico-Biol. Inter. 129:21–40.

    Article  CAS  Google Scholar 

  22. Felsted, R. L. and Bachur, N. R. (1980). Mammalian carbonyl reductases. Drug. Metab. Rev. 11:1–60.

    PubMed  CAS  Google Scholar 

  23. Wermuth, B., Platts, K. L., Seidel, A., and Oesch, F. (1986). Carbonyl reductase provides the enzymatic basis of quinone detoxification in man. Biochem. Pharmacol. 35:1277–1282.

    Article  PubMed  CAS  Google Scholar 

  24. Wermuth, B. (1981). Purication and properties of an NADPH-dependent carbonyl reductase from human brain. J. Biol. Chem. 256:1206–1213.

    PubMed  CAS  Google Scholar 

  25. Bohren, K. M., von Wartburg, J. P., and Wermuth, B. (1987). Kinetics of carbonyl reductase from human brain. Biochem. J. 244:165–171.

    PubMed  CAS  Google Scholar 

  26. Olson, L. E., Bedja, D., Alvey, S. J., Cardounel, A. J., Gabrielson, K. L., and Reeves, R. H. (2003). Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res. 63:6602–6606.

    PubMed  CAS  Google Scholar 

  27. Forrest, G. L., Gonzalez, B., Tseng, W., Li, X., and Mann, J. (2000). Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res. 60:5158–5164.

    PubMed  CAS  Google Scholar 

  28. Minotti, G., Ronchi, R., Salvatorelli, E., Menna, P., and Cairo, G. (2001). Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for ironmediated cardiotoxicity of antitumor therapy. Cancer Res. 61:8422–8428.

    PubMed  CAS  Google Scholar 

  29. Takanashi, S. and Bachur, N. R. (1976). Adriamycin metabolism in man: evidence from urinary metabolism. Drug Metab. Dispos. 4:79–87.

    PubMed  CAS  Google Scholar 

  30. Forrest, G. L., Akman, S., Doroshow, J., Rivera, H., and Kaplan, W. D. (1991). Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity. Mol. Pharmacol. 40:502–507.

    PubMed  CAS  Google Scholar 

  31. Bohren, K. M., Wermuth, B., Harrison, D., Dagmar, R., Petsko, G. A., and Gabbay, K. H. (1994). Expression, crystallization and preliminary crystallographic analysis of human carbonyl reductase. J. Mol. Biol. 244:659–664.

    Article  PubMed  CAS  Google Scholar 

  32. Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  33. Windholz, M., Budavari, S., Stroumtsos, L. Y., and Fertig, M. N. (1976). The Merck Index: An encyclopedia of chemical and drugs. 9th Edition, Merck & Co., Rahway, NJ.

    Google Scholar 

  34. Wermuth, B. (1985). Aldo-keto reductases, in Enzymology of Carbonyl Metabolism: Aldehyde Dehydrogenase, Aldo/Keto Reductase, and Alcohol Dehydrogenase (Flynn, T. G. and Weiner, H., ed.), Alan R. Liss, New York: pp. 209–230.

    Google Scholar 

  35. Cleland, W. W. (1979). Statistical analysis of enzyme kinetic data. Meth. Enz. 63:103–138.

    Article  CAS  Google Scholar 

  36. Kong, J., White, C. A., Krylov, A. I., Sherrill, C. D., Adamson, R. D., Furlani, T. R., et al. (2000). Q-Chem 2.0: a highperformance abinitio electronic structure program package. J. Computational Chem. 21:1532–1548.

    Article  CAS  Google Scholar 

  37. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2004). Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT.

    Google Scholar 

  38. Ghosh, D., Sawicki, M., Pletnev, V., Erman, M., Ohno, S., Nakajin, S., and Duax, W. L. (2001). Porcine carbonyl reductase: structural basis for a functional monomer in short chain dehydrogenases/reductases. J. Biol. Chem. 276: 18,457–18,463.

    CAS  Google Scholar 

  39. Jones, T. A., Cowan, S., Zou, J.-Y., and Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A. 47:110–119.

    Article  PubMed  Google Scholar 

  40. Lipscomb, L. A., Peek, M. E., Zhou, F. X., Bertrand, J. A., VanDerveer, D., and Williams, L. D. (1994). Water ring structure at DNA interfaces: hydration and dynamics of DNA-anthracycline complexes. Biochemistry 33:3649–3659.

    Article  PubMed  CAS  Google Scholar 

  41. Ax, W., Soldan, M., Koch, L., and Maser, E. (2000). Development of daunorubicin resistance in tumour cells by induction of carbonyl reduction. Biochem. Pharmacol. 59:293–300.

    Article  PubMed  CAS  Google Scholar 

  42. Gonzalez, B., Akman, S., Doroshow, J., Rivera, H., Kaplan, W. D., and Forrest, G. L. (1995). Protection against daunorubicin cytotoxicity by expression of a cloned human carbonyl reductase cDNA in K562 leukemia cells. Cancer Res. 55:4646–4650.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry A. Charlier Jr. Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slupe, A., Williams, B., Larson, C. et al. Reduction of 13-deoxydoxorubicin and daunorubicinol anthraquinones by human carbonyl reductase. Cardiovasc Toxicol 5, 365–376 (2005). https://doi.org/10.1385/CT:5:4:365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:5:4:365

Key Words

Navigation