Skip to main content
Log in

Matrix metalloproteinases and their role in pancreatic cancer: A review of preclinical studies and clinical trials

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) have received much attention in recent years for their role in a variety of malignancies. Pancreatic cancer is no exception; MMP-2 and MMP-9 show high levels of expression in clinical and experimental models. Inhibition of MMPs has shown great promise with synthetic inhibitors, such as BB-94, as tumorostatic agents in preclinical models, particularly when these are combined with gemcitabine. These findings have led to several clinical trials using the MMP inhibitors Marimastat and BAY 12-9566. Herein, we discuss the roles of MMPs and their inhibition in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001.CA Cancer J Clin 2001;51:15–36.

    Article  PubMed  CAS  Google Scholar 

  2. Johansson N, Ahonen M, Kahari VM. Matrix metalloproteinases in tumor invasion.Cell Mol Life Sci 2000;57:5–15.

    Article  PubMed  CAS  Google Scholar 

  3. Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences.Curr Opin Cell Biol 1998;10: 602–8.

    Article  PubMed  CAS  Google Scholar 

  4. Kahari VM, Saarialho-Kere U. Matrix metalloproteinases and their inhibitors in tumour growth and invasion.Ann Med 1999;31:34–45.

    PubMed  CAS  Google Scholar 

  5. Nagase H, Woessner JF Jr. Matrix metalloproteinases.J. Biol Chem 1999;274:21491–4.

    Article  PubMed  CAS  Google Scholar 

  6. Matrisian LM. The matrix-degrading metalloproteinases.Bioessays 1992;14:455–63.

    Article  PubMed  CAS  Google Scholar 

  7. Agren MS, Taplin CJ, Woessner JF Jr, et al. Collagenase in wound healing: effect of wound age and type.J Invest Dermatol 1992; 99:709–14.

    Article  PubMed  CAS  Google Scholar 

  8. Reponen P, Sahlberg C, Huhtala P, et al. Molecular cloning of murine 72-kDa type IV collagenase and its expression during mouse development.J Biol Chem 1992;267:7856–62.

    PubMed  CAS  Google Scholar 

  9. Tryggvason K, Hoyhtya M, Pyke C. Type IV collagenases in invasive tumors.Breast Cancer Res Treat 1993;24:209–18.

    Article  PubMed  CAS  Google Scholar 

  10. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion.Physiol Rev 1993;73:161–95.

    PubMed  CAS  Google Scholar 

  11. Jones L, Ghaneh P, Humphreys M, Neoptolemos JP. The matrix metalloproteinases and their inhibitors in the treatment of pancreatic cancer.Ann N Y Acad Sci 1999;880:288–307.

    Article  PubMed  CAS  Google Scholar 

  12. Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling.Trends Genet 1990;6:121–5.

    Article  PubMed  CAS  Google Scholar 

  13. Benbow U, Brinckerhoff CE. The AP-1 site and MMP gene regulation: what is all the fuss about?Matrix Biol 1997;15:519–26.

    Article  PubMed  CAS  Google Scholar 

  14. Karin M, Liu Z, Zandi E. AP-1 function and regulation.Curr Opin Cell Biol 1997;9:240–6.

    Article  PubMed  CAS  Google Scholar 

  15. Wasylyk C, Gutman A, Nicholson R, Wasylyk B. The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins.EMBO J 1991;10: 1127–34.

    PubMed  CAS  Google Scholar 

  16. Westermarck J, Seth A, Kahari VM. Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors.Oncogene 1997;14:2651–60.

    Article  PubMed  CAS  Google Scholar 

  17. Vincenti MP, White LA, Schroen DJ, et al. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability.Crit Rev Eukaryot Gene Expr 1996;6:391–411.

    PubMed  CAS  Google Scholar 

  18. Kerr LD, Miller DB, Matrisian LM. TGF-beta 1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence.Cell 1990;61:267–78.

    Article  PubMed  CAS  Google Scholar 

  19. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion.FASEB J 1999;13:781–92.

    PubMed  CAS  Google Scholar 

  20. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways.Curr Opin Cell Biol 1997;9:180–6.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades.Adv Cancer Res 1998;74:49–139.

    Article  PubMed  CAS  Google Scholar 

  22. Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-actived protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion.Cancer Res 1998;58:1135–9.

    PubMed  CAS  Google Scholar 

  23. Nagase H. Activation mechanisms of matrix metalloproteinases.Biol Chem 1997;378:151–60.

    PubMed  CAS  Google Scholar 

  24. Van Wart HE, Birkedal-Hansen H. The cysteine swith: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family.Proc Natl Acad Sci USA 1990;87:5578–82.

    Article  PubMed  Google Scholar 

  25. Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen.Nature 1995;375:244–7.

    Article  PubMed  CAS  Google Scholar 

  26. Strongin AY, Collier I, Bannikov G, et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease.J Biol Chem 1995;270:5331–8.

    Article  PubMed  CAS  Google Scholar 

  27. Zucker S, Drews M, Conner C, et al. Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP).J Biol Chem 1998;273:1216–22.

    Article  PubMed  CAS  Google Scholar 

  28. Kinoshita T, Sato H, Okada A, et al. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads.J Biol Chem 1998;273:16098–103.

    Article  PubMed  CAS  Google Scholar 

  29. Bramhall SR, Neoptolemos JP, Stamp GW, Lemoine NR. Imbalance of expression of matrix metalloproteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma.J Pathol 1997;182:347–55.

    Article  PubMed  CAS  Google Scholar 

  30. Satoh K, Ohtani H, Shimosegawa T, et al. Infrequent stromal expression of gelatinase A and intact basement membrane in intraductal neoplasms of the pancreas.Gastroenterology 1994;107: 1488–95.

    PubMed  CAS  Google Scholar 

  31. Gress TM, Muller-Pillasch F, Lerch MM, et al. Expression and in-situ localization of genes coding for extracellular matrix proteins and extracellular matrix degrading proteases in pancreatic cancer.Int J Cancer 1995;62:407–13.

    Article  PubMed  CAS  Google Scholar 

  32. Koshiba T, Hosotani R, Wada M, et al. Involvement of matrix metalloproteinase-2 activity in invasion and metastasis of pancreatic carcinoma.Cancer 1998;82:642–50.

    Article  PubMed  CAS  Google Scholar 

  33. Baker AH, Ahonen M, Kahari VM. Potential applications of tissue inhibitor of metalloproteinase (TIMP) overexpression for cancer gene therapy.Adv Exp Med Biol 2000;456–83.

  34. Birkedal-Hansen H, Moore WG, Bodden MK, et al. Matrix metalloproteinases: a review.Crit Rev Oral Biol Med 1993;4:197–250.

    PubMed  CAS  Google Scholar 

  35. Bode W, Reinemer P, Huber R, et al. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specific.EMBO J 1994;13:1263–9.

    PubMed  CAS  Google Scholar 

  36. Howard EW, Bullen EC, Banda MJ. Preferential inhibition of 72-and 92-kDa gelatinases by tissue inhibitor of metalloproteinases-2.J Biol Chem 1991;266:13070–5.

    PubMed  CAS  Google Scholar 

  37. Willenbrock F, Murphy G. Structure-function relationships in the tissue inhibitors of metalloproteinases.Am J Respir Crit Care Med 1994;150:S165–70.

    Google Scholar 

  38. Zervos EE, Shafii AE, Haq M, Rosemurgy AS. Matrix metalloproteinase inhibition suppresses MMP-2 activity and activation of PANC-1 cells in vitro.J Surg Res 1999;84:162–7.

    Article  PubMed  CAS  Google Scholar 

  39. Jimenez RE, Hartwig W, Antoniu BA, et al. Effect of matrix metalloproteinase inhibition on pancreatic cancer invasion and metastasis: an additive strategy for cancer control.Ann Surg 2000; 231:644–54.

    Article  PubMed  CAS  Google Scholar 

  40. Zervos EE, Norman JG, Gower WR, et al. Matrix metalloproteinase inhibition attenuates human pancreatic cancer growth in vitro and decreases mortality and tumorigenesis in vivo.J Surg Res 1997;69:367–71.

    Article  PubMed  CAS  Google Scholar 

  41. Zervos EE, Franz MG, Salhab KF, et al. Matrix metalloproteinase inhibition improves survival in an orthotopic model of human pancreatic cancer.J Gastrointest Surg 2000;4:614–9.

    Article  Google Scholar 

  42. Zervos EE, Shafii AE, Rosemurgy AS. Matrix metalloproteinase (MMP) inhibition selectively decreases type II MMP activity in a murine model of pancreatic cancer.J Surg Res 1999;81:65–8.

    Article  PubMed  CAS  Google Scholar 

  43. Haq M, Shafii A, Zervos EE, Rosemurgy AS. Addition of matrix metalloproteinase inhibition to conventional cytotoxic therapy reduces tumor implantation and prolongs survival in a murine model of human pancreatic cancer.Cancer Res 2000;60:3207–11.

    PubMed  CAS  Google Scholar 

  44. Millar AW, Brown PD, Moore J, et al. Results of single and repeat dose studies of the oral matrix metalloproteinase inhibitor marimastat in healthy male volunteers.Br J Clin Pharmacol. 1998;45: 21–6.

    Article  PubMed  CAS  Google Scholar 

  45. Nemunaitis J, Poole C, Primrose J, et al. Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: selection of a biologically active and tolerable dose for longer-term studies.Clin Cancer Res 1998;4:1101–9.

    PubMed  CAS  Google Scholar 

  46. Rosemurgy A, Harris J, Langleben A, et al. Marimastat in patients with advanced pancreatic cancer: a dose-finding study.Am J Clin Oncol 1999;22:247–52.

    Article  PubMed  CAS  Google Scholar 

  47. Evans JD, Stark A, Johnson CD, et al. A phase II trial of marimastat in advanced pancreatic cancer.Br J Cancer 2001;85:1865–70.

    Article  PubMed  CAS  Google Scholar 

  48. Bramhall SR, Rosemurgy A, Brown PD, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial.J Clin Oncol 2001;19:3447–55.

    PubMed  CAS  Google Scholar 

  49. Moore M, Hamm J, Eisenberg P, et al. A comparison between gemcitabine and the matrix metalloproteinase inhibitor BAY12-9566 in patients with advanced pancreatic cancer (abstract 930).Proc Am Soc Clin Oncol 2000;19:240a.

    Google Scholar 

  50. Bloomston M, Shafii A, Zervos EE, et al. MMP-2 and TIMP-1 are derived from, not in response to, pancreatic cancer.J Surg Res 2002;102:35–8.

    Article  PubMed  CAS  Google Scholar 

  51. Yamauchi K, Ogata Y, Nagase H, Shirouzu K. Inhibition of liver metastasis from orthotopically implanted colon cancer in nude mice by transfection of the TIMP-1 gene into KM12SM cells.Surg Today 2001;31:791–8.

    Article  PubMed  CAS  Google Scholar 

  52. Wang M, Liu YE, Greene J, et al. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4.Oncogene 1997;14:2767–74.

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe M, Takahashi Y, Ohta T, et al. Inhibition of metastasis in human gastric cancer cells transfected with tissue inhibitor of metalloproteinase 1 gene in nude mice.Cancer 1996;77:1676–80.

    PubMed  CAS  Google Scholar 

  54. Koop S, Khokha R, Schmidt EE, et al. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth.Cancer Res 1994;54:4791–7.

    PubMed  CAS  Google Scholar 

  55. Bloomston M, Shafii A, Zervos EE, et al. Overexpression of TIMP-1 by pancreatic cancer cells reduces in-vitro invasion and in-vivo tumor growth.J Surg Oncol (in press).

  56. Bloomston M, Shafii A, Zervos EE, Rosemurgy A. TIMP-1 overexpression in pancreatic cancer attenuates tumor growth, decreases implantation and metastasis, and inhibits angiogenesis.J Surg Res 2002;102:39–44.

    Article  PubMed  CAS  Google Scholar 

  57. Bloomston M, Shafii A, Rojiani A, Rosemurgy A. TIMP-1 antisense favorably affects pancreatic cancer biology.Surg Forum 2001;52:228–9.

    CAS  Google Scholar 

  58. Kuniyasu H, Ellis LM, Evans DB, et al. Relative expression of E-cadherin and type IV collagenase genes predicts disease outcome in patients with resectable pancreatic carcinoma.Clin Cancer Res 1999;5:25–33.

    PubMed  CAS  Google Scholar 

  59. Ito T, Ito M, Shiozawa J, et al. Expression of the MMP-1 in human pancreatic carcinoma: relationship with prognostic factor.Mod Pathol 1999;12:669–74.

    PubMed  CAS  Google Scholar 

  60. Gong YL, Xu GM, Huang WD, Chen LB. Expression of matrix metalloproteinases and the tissue inhibitors of metalloproteinases and their local invasiveness and metastasis in Chinese human pancreatic cancer.J Surg Oncol 2000;73:95–9.

    Article  PubMed  CAS  Google Scholar 

  61. Määttä M, Soini Y, Liakka A, Autio-Harmainen H. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis.Clin Cancer Res 2000;6:2726–34.

    PubMed  Google Scholar 

  62. Ellenrieder V, Alber B, Lacher U, et al. Role of MT-MMPs and MMP-2 in pancreatic cancer progression.Int J Cancer 2000;85: 14–20.

    Article  PubMed  CAS  Google Scholar 

  63. Fukushima H, Yamamoto H, Itoh F, et al. Association of matrilysin mRNA expression with K-ras mutations and progression in pancreatic ductal adenocarcinomas.Carcinogenesis 2001;22:1049–52.

    Article  PubMed  CAS  Google Scholar 

  64. Yamamoto H, Itoh F, Iku S, et al. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression.J Clin Oncol 2001;19:1118–27.

    PubMed  CAS  Google Scholar 

  65. Ree AH, Florenes VA, Berg JP, et al. High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases.Clin Cancer Res 1997;3:1623–8.

    PubMed  CAS  Google Scholar 

  66. Nakopoulou L, Katsarou S, Giannopoulou I, et al. Correlation of tissue inhibitor of metalloproteinase-2 with proliferative activity and patients’ survival in breast cancer.Mod Pathol 2002;15:26–34.

    Article  PubMed  Google Scholar 

  67. Ko BK, Cho HR, Choi DW, et al. Reduced expression of tissue inhibitor of metalloproteinase in nodal metastasis of stomach cancer.J Korean Med Sci 1998;13:286–90.

    PubMed  CAS  Google Scholar 

  68. Joo YE, Seo KS, Kim HS, et al. Expression of tissue inhibitors of metalloproteinases (TIMPs) in gastric cancer.Dig Dis Sci 2000; 45:114–21.

    Article  PubMed  CAS  Google Scholar 

  69. Moser PL, Kieback DG, Hefler L, et al. Immunohistochemical detection of matrix metalloproteinases (MMP) 1 and 2, and tissue inhibitor of metalloproteinase 2 (TIMP-2) in stage IB cervical cancer.Anticancer Res 1999;19:4391–3.

    PubMed  CAS  Google Scholar 

  70. Davidson B, Golberg I, Kopolovic J, et al. MMP-2 and TIMP-2 expression correlates with poor prognosis in cervical carcinoma—a clinicopathologic study using immunohistochemistry and mRNA in situ hybridization.Gynecol Oncol 1999;73:372–82.

    Article  PubMed  CAS  Google Scholar 

  71. Joo YE, Seo KS, Kim J, et al. Role of tissue inhibitors of metalloproteinases (TIMPs) in colorectal carcinoma.J Korean Med Sci 1999;14:417–23.

    PubMed  CAS  Google Scholar 

  72. Holten-Andersen MN, Stephens RW, Nielsen HJ, et al. High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer.Clin Cancer Res 2000;6:4292–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Rosemurgy II MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloomston, M., Zervos, E.E. & Rosemurgy, A.S. Matrix metalloproteinases and their role in pancreatic cancer: A review of preclinical studies and clinical trials. Annals of Surgical Oncology 9, 668–674 (2002). https://doi.org/10.1007/BF02574483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02574483

Key Words

Navigation