Skip to main content
Log in

Addressing the Challenges of Low Clearance in Drug Research

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

As a result of high-throughput ADME screening, early metabolite identification, and exploration of novel chemical entities, low-intrinsic-clearance compounds continue to increase in drug discovery portfolios. Currently available in vitro tools have limited resolution below a certain intrinsic clearance value, which can lead to overestimation of clearance and dose and underestimation of half-life. Significant advances have been made in recent years and novel approaches have been developed to address the challenges of low clearance in drug discovery, such as the hepatocyte relay method, use of qNMR-based standards of biosynthesized drug metabolites to permit monitoring metabolite formation, coculture hepatocyte systems, and the time depending modeling approach. Future development in the field will enable faster, more precise, and lower cost profiling of the properties of low-clearance compounds for intrinsic clearance, metabolite identification, and reaction phenotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roffey SJ, Obach RS, Gedge JI, Smith DA. What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab Rev. 2007;39(1):17–43.

    Article  CAS  PubMed  Google Scholar 

  2. Di L, Kerns EH, Ma XJ, Huang Y, Carter GT. Applications of high throughput microsomal stability assay in drug discovery. Comb Chem High Throughput Screen. 2008;11(6):469–76.

    Article  CAS  PubMed  Google Scholar 

  3. Hop CECA, Cole MJ, Davidson RE, Duignan DB, Federico J, Janiszewski JS, et al. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models. Curr Drug Metab. 2008;9(9):847–53.

    Article  CAS  PubMed  Google Scholar 

  4. Rudewicz PJ, Yue Q, Shin Y. High-throughput strategies for metabolite identification in drug discovery. High-Throughput Analysis in the Pharmaceutical Industry. 2009;141–54

  5. Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Des. 2009;15(19):2184–94.

    Article  CAS  PubMed  Google Scholar 

  6. Kerns EH, Di L. Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization. London: ELSEVIER; 2008.

    Google Scholar 

  7. Pfefferkorn JA, Guzman-Perez A, Litchfield J, Aiello R, Treadway JL, Pettersen J, et al. Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid as a hepatoselective glucokinase activator clinical candidate for treating Type 2 diabetes mellitus. J Med Chem. 2012;55(3):1318–33.

    Article  CAS  PubMed  Google Scholar 

  8. Oballa RM, Belair L, Black WC, Bleasby K, Chan CC, Desroches C, et al. Development of a liver-targeted stearoyl-CoA desaturase (SCD) inhibitor (MK-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia. J Med Chem. 2011;54(14):5082–96.

    Article  CAS  PubMed  Google Scholar 

  9. Tu M, Mathiowetz AM, Pfefferkorn JA, Cameron KO, Dow RL, Litchfield J, et al. Medicinal chemistry design principles for liver targeting through OATP transporters. Curr Topic Med Chem (Sharjah, United Arab Emirates). 2013;13(7):857–66.

    Article  CAS  Google Scholar 

  10. Rangan S, Tahrani AA, Macleod AF, Moulik PK. Once weekly thyroxine treatment as a strategy to treat non-compliance. Shrewsbury: England: United Kingdom FIELD Citation: Department of Diabetes and Endocrinology, Royal Shrewsbury Hospital; 2007. 1469–0756.

    Book  Google Scholar 

  11. Jones HM, Houston JB. Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos. 2004;32(9):973–82.

    Article  CAS  PubMed  Google Scholar 

  12. Di L, Trapa P, Obach RS, Atkinson K, Bi Y-A, Wolford AC, et al. A novel relay method for determining low-clearance values. Drug Metab Dispos. 2012;40(9):1860–5.

    Article  CAS  PubMed  Google Scholar 

  13. Di L, Atkinson K, Orozco CC, Funk C, Zhang H, McDonald TS, et al. In vitro-in vivo correlation for low-clearance compounds using hepatocyte relay method. Drug Metab Dispos. 2013;41(12):2018–23.

    Article  CAS  PubMed  Google Scholar 

  14. Ballard TE, Orozco CC, Obach RS. Generation of major human excretory and circulating drug metabolites using a hepatocyte relay method. Drug Metab Dispos. 2014;42(5):899–902. 4pp.

    Article  PubMed  Google Scholar 

  15. Walker GS, Bauman JN, Ryder TF, Smith EB, Spracklin DK, Obach RS. Biosynthesis of drug metabolites and quantitation using NMR spectroscopy for use in pharmacologic and drug metabolism studies. Drug Metab Dispos. 2014;42(10):1627–39.

    Article  CAS  PubMed  Google Scholar 

  16. Vishwanathan K, Babalola K, Wang J, Espina R, Yu L, Adedoyin A, et al. Obtaining exposures of metabolites in preclinical species through plasma pooling and quantitative NMR: addressing metabolites in safety testing (MIST) guidance without using radiolabeled compounds and chemically synthesized metabolite standards. Chem Res Toxicol. 2009;22(2):311–22.

    Article  CAS  PubMed  Google Scholar 

  17. Walker GS, Ryder TF, Sharma R, Smith EB, Freund A. Validation of isolated metabolites from drug metabolism studies as analytical standards by quantitative NMR. Drug Metab Dispos. 2011;39(3):433–40.

    Article  CAS  PubMed  Google Scholar 

  18. Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, et al. Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol. 2009;5(10):1159–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Sevidal S, Kelly JM, Obach RS. The Use of a 3D Hepatic Culture System (Liverchip) as a Tool for Predicting Human Intrinsic Clearance. ISSX2008.

  20. Vivares A, Salle-Lefort S, Arabeyre-Fabre C, Ngo R, Penarier G, Bremond M, et al. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica. 2014;1–16.

  21. Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem Pharmacol. 2010;79(7):1036–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chan TS, Yu H, Moore A, Khetani SR, Tweedie D. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model. HepatoPac Drug Metab Dispos. 2013;41(12):2024–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the past and current members of the low clearance team of Pfizer Inc. for their contributions, especially Karen Atkinson, Eric Ballard, Yi-An Bi, Heather Eng, Carrie Funk, Patrick Trapa, Christine Orozco, Angela Wolford, and Xin Yang; thank Joanne Brodfuehrer, John Litchfield, Cho-ming Loi, and Bill Smith for the case studies; and thank Larry Tremaine, Tess Wilson, and Charlotte Allerton for providing leadership and support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Di.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, L., Obach, R.S. Addressing the Challenges of Low Clearance in Drug Research. AAPS J 17, 352–357 (2015). https://doi.org/10.1208/s12248-014-9691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9691-7

KEY WORDS

Navigation