Skip to main content

Advertisement

Log in

Poly(ethylene glycol)-Modified Proteins: Implications for Poly(lactide-co-glycolide)-Based Microsphere Delivery

  • Emerging Drug Delivery Technologies
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The reduced injection frequency and more nearly constant serum concentrations afforded by sustained release devices have been exploited for the chronic delivery of several therapeutic peptides via poly(lactide-co-glycolide) (PLG) microspheres. The clinical success of these formulations has motivated the exploration of similar depot systems for chronic protein delivery; however, this application has not been fully realized in practice. Problems with the delivery of unmodified proteins in PLG depot systems include high initial “burst” release and irreversible adsorption of protein to the biodegradable polymer. Further, protein activity may be lost due to the damaging effects of protein-interface and protein-surface interactions that occur during both microsphere formation and release. Several techniques are discussed in this review that may improve the performance of PLG depot delivery systems for proteins. One promising approach is the covalent attachment of poly(ethylene glycol) (PEG) to the protein prior to encapsulation in the PLG microspheres. The combination of the extended circulation time of PEGylated proteins and the shielding and potential stabilizing effects of the attached PEG may lead to improved release kinetics from PLG microsphere system and more complete release of the active conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. M. Harris, and R. B. Chess. Effect of PEGylation on pharmaceuticals. Nat. Rev. 2:214–221 (2003).

    CAS  Google Scholar 

  2. P. Hutton, G. Cooper, F. M. James, F. M. James III, and J. F. Butterworth IV. Anaesthesia: Fundamental principles and practice, Informa Health Care, London, 2002.

    Google Scholar 

  3. Genentech, http://www.gene.com/gene/products/information/opportunistic/nutropin-aq/insert.jsp. Accessed various dates.

  4. FDA, http://www.fda.gov/MEDWATCH/SAFETY/2004/oct_PI/Nutropin_PI.pdf. Accessed various dates.

  5. Pfizer, http://www.pfizer.com/files/products/uspi_somavert.pdf. Accessed various dates.

  6. T. Tice. Delivering with depot formulations. Drug Deliv. Technol. 4:44–47 (2004).

    Google Scholar 

  7. D. L. Wise, D. J. Trantolo, R. T. Marino, and J. P. Kitchell. Opportunities and challenges in the design of implantable biodegradable polymeric systems for the delivery of antimicrobial agents and vaccines. Adv. Drug Deliv. Rev. 1(3):269–269 (1988).

    Article  Google Scholar 

  8. S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8:713–720 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. D. T. O’Hagan, M. Singh, and R. K. Gupta. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev. 32:225–246 (1998).

    Article  PubMed  Google Scholar 

  10. FDA, http://vm.cfsan.fda.gov/%7Edms/eafus.html. Accessed various dates.

  11. K. L. Smith, M. E. Schimpf, and K. E. Thompson. Bioerodible polymers for delivery of macromolecules. Adv. Drug Deliv. Rev. 4:343–357 (1990).

    Article  CAS  Google Scholar 

  12. J. Cleland. Protein delivery from biodegradable microspheres. In L. M. Sanders, and R. W. Henderen (eds.), Protein Delivery: Physical Systems, Plenum, New York, 1997, pp. 1–43.

    Google Scholar 

  13. M. A. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials. 20:1057–1062 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. M. Ahlheim, M. Ausborn, D. Bodmer, C. Schoch. Ophthalmic depot formulations for periocular or subconjunctival administration. European patent EP1429725.

  15. M. Diwan, and T. G. Park. Stabilization of recombinant interferon-a by PEGylation for encapsulation in PLGA microspheres. Int. J. Pharm. 252:111–122 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. S. M. Daly, T. M. Przybycien, and R. D. Tilton. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Biotechnol. Bioeng. 90(7):856–868 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. M. Van de Weert, W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167 (2000).

    Article  PubMed  Google Scholar 

  18. O. L. Johnson, W. Jaworowicz, J. L. Cleland, L. Bailey, M. Charnis, E. Duenas, C. Wu, D. Shepard, S. Magil, T. Last, A. J. S. Jones, and S. D. Putney. The stabilization and encapsulation of human growth hormone into biodegradable microspheres. Pharm. Res. 14:730–735 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. M. A. Tracy. Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog. 14:108–115 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. Alkermes, http://www.alkermes.com/newsroom/showArticle.aspx?id = 278. Access Aug 13, 2007.

  21. I. J. Castellanos, W. Al-Azzam, and K. Griebenow. Effect of the covalent modification with poly(ethylene glycol) on α-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic) microspheres. J. Pharm. Sci. 94(2):327–340 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. A. Sanchez, J. L. Vila-Jato, and M. J Alonso. Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporine A. Int. J. Pharm. 99:263–273 (1993).

    Article  CAS  Google Scholar 

  23. M. Diwan, and T. G. Park. Pegylation enhances protein stability during encapsulation in PLGA microspheres. J. Control. Release. 73:233–244 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. C. Pérez, P.D. Jesús, and K. Griebenow. Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. Int. J. Pharm. 248:193–206 (2002).

    Article  PubMed  Google Scholar 

  25. D. Bodmer, T. Kissel, and E. Traechslin. Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J. Control. Release. 21:129–138 (1992).

    Article  CAS  Google Scholar 

  26. M. J. Alonso, S. Cohen, T. G. Park, R. K. Gupta, G. R. Siber, and R. Langer. Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm. Res. 10:945–953 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. T. Heya, H. Okada, Y. Ogawa, and H. Toguchi. In vitro and in vivo evaluation of thyrotropin releasing hormone release from copoly(dl-lactic/glycolic acid) microspheres. Int. J. Pharm. 72:199–205 (1991).

    Article  CAS  Google Scholar 

  28. G. Crotts, H. Sah, and T. G. Park. Adsorption determines in vitro protein release rate from biodegradable microspheres: quantitative analysis of surface area during degradation. J. Control. Release. 47:101–111 (1997).

    Article  CAS  Google Scholar 

  29. J. L. Cleland, M. F. Powell, and S. J. Shire. The development of stable protein formulations: A close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carr. Syst. 10:307–377 (1993).

    CAS  Google Scholar 

  30. J. M. Harris, N. E. Martin, and M. Modi. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40:539 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. M. Michaelis, J. Cinati, J. Cinati, P. Pouckova, K. Langer, J. Kreuler, and J. Matousek. Coupling of the antitumoral enzyme bovine seminal ribonuclease to polyethylene glycol chains increases its systemic efficacy in mice. Anticancer Drugs. 13:149–154 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. R. B. Greenwald, Y. H. Choe, J. McGuire, and C. D. Conover. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55:217–250 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. J. Y. Shu, C. Tan, W. D. DeGrado, and T. Xu. New design of helix bundle peptide-polymer conjugates. Biomacromolecules. 9:2111–2117 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Y. Noguchi, J. Wun, R. Duncan, J. Strohalm, K. Ulbrish, T. Akaike, and H. Maeda. Early phase tumor accumulation of macromolecules: A great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res. 89:307–314 (1998).

    PubMed  CAS  Google Scholar 

  35. Y. Murakami, Y. Tabata, and Y. Ikada. Tumor accumulation of poly(ethylene glycol) with different molecular weights after intravenous injection. Drug Delivery. 4:23–32 (1997).

    Article  CAS  Google Scholar 

  36. A.S. Morar, J. L. Schrimsher, and M. D. Chavez. PEGylation of proteins: a structural approach: structural properties of PEGylated proteins could play an increasingly important role in developing optimal therapeutic protein drugs. (Protein PEGylation). Biopharm International. 19(4):34 (2006).

    CAS  Google Scholar 

  37. C. Perez, I. J. Castellanos, H. R. Costantino, W. Al-Azzam, and K. Griebenow. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J. Pharm. Pharmacol. 54(3):310–313 (2001).

    Google Scholar 

  38. J. L. Cleland, and A. J. S. Jones. Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres. Pharm. Res. 13:1464–1475 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. M. J. Alonso, R. K. Gupta, C. Min, G. R Siber, and R. Langer. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine. 12:299–306 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. H. Sah. Protein instability toward organic solvent/water emulsification: Implications for protein microencapsulation into microspheres. PDA J. Pharm. Sci. Technol. 53:3–10 (1999).

    PubMed  CAS  Google Scholar 

  41. H. K. Kim, and T. G. Park. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotechnol. Bioeng. 65:659–667 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. G. Crotts, and T. G. Park. Preparation of porous and nonporous biodegradable polymeric hollow microspheres. J. Control. Release. 35:91–105 (1995).

    Article  CAS  Google Scholar 

  43. T. Knubovets, J. J. Osterhout, and A. M. Klibanov. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies. Biotechnol. Bioeng. 63:242–248 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. R. Jain, N. H. Shah, A. W. Malick, and C. T. Rhodes. Controlled drug delivery by biodegradable poly(ester) devices: Different preparative approaches. Drug Devel. Ind. Pharm. 24(8):703–727 (1998).

    Article  CAS  Google Scholar 

  45. R. Arshady. Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. J. Control. Release. 17:1–21 (1999).

    Article  Google Scholar 

  46. J.-M. Péan, M.-C. Venier-Julienne, F. Boury, P. Menei, B. Denizot, and J.-P. Benoit. NGF release from poly(D,L-lactide-co-glycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. J. Control. Release. 56:175–187 (1998).

    Article  PubMed  Google Scholar 

  47. J. Rojas, H. Pinto-Alphandary, E. Leo, S. Pecquet, P. Couvreur, and E. Fattal. Optimization of the encapsulation and release of beta-lactoglobulin entrapped poly(D,L-lactide-co-glycolide) microspheres. Int. J. Pharm. 183:67–71 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. H. Sah. Stabilization of proteins against methylene chloride/water interface induced denaturation and aggregation. J. Control. Release. 58:143–151 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. K.S. Suslick, D. A. Hammerton, and R. E. Cline. The sono-chemical hot spot. J. Am. Chem. Soc. 108:5641–5642 (1986).

    Article  CAS  Google Scholar 

  50. P. Reisz, and T. Kondo. Free radical formation induced by ultrasound and its biological implications. Free Radic. Biol. Med. 13:247–270 (1992).

    Article  Google Scholar 

  51. M. F. Zambaux, F. Bonneaux, R. Gref, E. Dellacherie, and C. Vigneron. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release. 60:179–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. M. Morlock, H. Koll, G. Winter, and T. Kissel. Microencapsulation of rh-erythropoietin using biodegradable poly(D,L-lactide-co-glycolide): Protein stability and the effect of stabilizing excipients. Eur. J. Pharm. Biopharm. 43:29–36 (1997).

    Article  CAS  Google Scholar 

  53. T. Uchida, K. Shiosaki, Y. Nakada, K. Fukada, Y. Eda, S. Tokiyoshi, N. Nagareya, and K. Matsuyama. Microencapsulation of hepatitis B core antigen for vaccine preparation. Pharm. Res. 15:1708–1713 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. H. Sah. Protein behavior at the water/methylene chloride interface. J. Pharm. Sci. 88:1320–1325 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. C. Perez, and K. Griebenow. Improved activity and stability of lysozyme at the water/CH2Cl2 interface: enzyme unfolding and aggregation and its prevention by polyols. J. Pharm. Sci. 53:1217–1226 (2001).

    CAS  Google Scholar 

  56. E. S. Lee, K. H. Park, D. M. Kim, I. S. Park, H. Y. Min, D. H. Lee, S. Kim, J. H. Kim, and K. Na. Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres. Biomaterials. 28(17):2754–2762 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. B. Bittner, C. Witt, K. Mader, and T. Kissel. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. J. Control. Release. 60:297–309 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. T. G. Park, H. Y. Lee, and Y. S. Nam. A new preparation method for protein loaded poly (D,L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J. Control. Release. 55:181–191 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. G. Crotts, and T. G. Park. Stability and release of bovine serum albumin encapsulated within poly(D,L-lactide-co-glycolide) microparticles. J. Control. Release. 44:123–134 (1997).

    Article  CAS  Google Scholar 

  60. S. M. Butler, M. A. Tracy, and R. D. Tilton. Adsorption of serum albumin to thin films of poly(lactide-co-glycolide). J. Control. Release. 58:335–347 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. P. Bouillot, N. Ubrich, F. Sommer, T. M. Duc, J. P. Loeffler, and E. Dellacherie. Protein encapsulation in biodegradable amphiphilic microspheres. Int. J. Pharm. 181:159–172 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. A. Klibanov and R. S. Langer. Methods of decreasing the hydrophobicity of fibroblast and other interferons. United States Patent 4,414,147.

  63. K. D. Hinds, K. M. Campbell, K. M. Holland, D. H. Lewis, C. A. Piche, and P. G. Schmidt. PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis. J. Control. Release. 104:447–460 (2005).

    PubMed  CAS  Google Scholar 

  64. O. B. Kinstler, N. E. Gabriel, C. E. Farrar, R. B. DePrince. N-Terminally chemically modified protein compositions and methods. United States Patent 5, 824, 784.

  65. S. M. Daly, T. M. Przybycien, and R. D. Tilton. Adsorption of poly(ethylene glycol)-modified lysozyme to silica. Langmuir. 21:1328–1337 (2005).

    Article  PubMed  CAS  Google Scholar 

  66. S. M. Daly, T. M. Przybycien, and R. D. Tilton. Coverage dependent orientation of lysozyme adsorbed on silica. Langmuir. 19:3848–3857 (2003).

    Article  CAS  Google Scholar 

  67. S. M. Daly, T. M. Przybycien, and R. D. Tilton. Aggregation of lysozyme and poly(ethylene glycol)-modified lysozyme after adsorption to silica. Colloids Surf., B Biointerfaces. 57(1):81–88 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Science Foundation (grant CBET 0755284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd M. Przybycien.

Additional information

Guest Editor: Dexi Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, S.S., Tilton, R.D. & Przybycien, T.M. Poly(ethylene glycol)-Modified Proteins: Implications for Poly(lactide-co-glycolide)-Based Microsphere Delivery. AAPS J 11, 88–98 (2009). https://doi.org/10.1208/s12248-009-9081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9081-8

Key words

Navigation