Skip to main content

Advertisement

Log in

Time-and concentration-dependent penetration of doxorubicin in prostate tumors

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

The penetration of paclitaxel into multilayered solid tumors is time- and concentration-dependent, a result of the drug-induced apoptosis and changes in tissue composition. This study evaluates whether this tissue penetration property applies to other highly protein-bound drugs capable of inducing apoptosis. The penetration of doxorubicin was studied in histocultures of prostate xenograft tumors and tumor specimens obtained from patients who underwent radical prostatectomy. The kinetics of drug uptake and efflux in whole tumor histocultures were studied by analyzing the average tumor drug concentration using high-pressure liquid chromatography. Spatial drug distribution in tumors and the drug concentration gradient across the tumors were studied using fluorescence microscopy. The results indicate that drug penetration was limited to the periphery for 12 hours in patient tumors and to 24 hours in the more densely packed xenograft tumors. Subsequently, the rate of drug penetration to the deeper tumor tissue increased abruptly in tumors treated with higher drug concentrations capable of inducing apoptosis (i.e., >5 μm), but not in tumors treated with lower concentrations. These findings indicate a time- and concentration-dependent penetration of doxorubicin in solid tumors, similar to that of paclitaxel. We conclude that doxorubicin penetration in solid tumors is time- and concentration-dependent and is enhanced by drug-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain RK. Barriers to drug delivery in solid tumors. Sci Am. 1994;271:58–65.

    Article  CAS  PubMed  Google Scholar 

  2. Nativ O, Aronson M, Medalia O, et al. Anti-neoplastic activity of paclitaxel on experimental superficial bladder cancer: in vivo and in vitro studies. Int J Cancer. 1997;70:297–301.

    Article  CAS  PubMed  Google Scholar 

  3. Song D, Wientjes M G, Au J L-S. Bladder tissue pharmacokinetics of intravesical taxol. Cancer Chemother Pharmacol. 1997;40:285–292.

    Article  CAS  PubMed  Google Scholar 

  4. Song D, Wientjes MG, Gan Y, Au JL-S. Bladder tissue pharmacokinetics and antitumor effect of intravesical 5-fluorouridine. Clin Cancer Res. 1997;3:901–909.

    CAS  PubMed  Google Scholar 

  5. Markman M, Francis P, Rowinsky E, Hoskins W. Intrapentoneal paclitaxel: a possible role in the management of ovarian cancer? Semin Oncol. 1995;22:84–87.

    CAS  PubMed  Google Scholar 

  6. Markman M. Intraperitoneal therapy of ovarian cancer. Semin Oncol. 1998;25:356–360.

    CAS  PubMed  Google Scholar 

  7. Kerr DJ, Kaye SB. Aspects of cytotoxic drug penetration, with particular reference to anthracyclines. Cancer Chemother Pharmacol. 1987;19:1–5.

    Article  CAS  PubMed  Google Scholar 

  8. Durand RE. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage? Cancer Chemother Pharmacol. 1992;26:198–204.

    Article  Google Scholar 

  9. Erlanson M, Daniel-Szolgay E, Carlsson J. Relations between the penetration, binding and average concentration of cytostatic drugs in human tumour spheroids. Cancer Chemother Pharmacol. 1992;29:343–353.

    Article  CAS  PubMed  Google Scholar 

  10. Baguley BC, Finlay GJ. Pharmacokinetic/cytokinetic principles in the chemotherapy of solid tumours. Clin Exp Pharmacol Physiol. 1995;22:825–828.

    Article  CAS  PubMed  Google Scholar 

  11. Tunggal JK, Cowan DS, Shaikh H, Tannock IF. Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Cancer Res. 1999;5:1583–1586.

    CAS  PubMed  Google Scholar 

  12. Durand RE. Distribution and activity of antineoplastic drugs in a tumor model. J Natl Cancer Inst. 1989;81:146–152.

    Article  CAS  PubMed  Google Scholar 

  13. Lankelma J, Dekker H, Luque FR, et al. Doxorubicin gradients in human breast cancer. Clin Cancer Res. 1999;5:1703–1707.

    CAS  PubMed  Google Scholar 

  14. Kuh HJ, Jang SH, Wientjes MG, Weaver JR, Au JL-S. Determinants of paclitaxel penetration and accumulation in human solid tumor. J Pharmacol Exp Ther. 1999;290:871–880.

    CAS  PubMed  Google Scholar 

  15. Hamilton G. Multicellular spheroids as an in vitro tumor model. Cancer Lett 1998;131:29–34.

    Article  CAS  PubMed  Google Scholar 

  16. Kunz-Schughart LA. Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int. 1999;23:157–161.

    Article  CAS  PubMed  Google Scholar 

  17. Kabalin JN, Peehl DM, Stamey TA. Clonal growth of human prostatic epithelial cells is stimulated by fibroblasts. Prostate. 1989;14:251–263.

    Article  CAS  PubMed  Google Scholar 

  18. Robbins KT, Connors KM, Storniolo AM, Hanchett C, Hoffman RM. Sponge-gel-supported histoculture drug-response assay for head and neck cancer Correlations with clinical response to cisplatin Arch Otolaryngol Head Neck Surg. 1994;120:288–292.

    Article  CAS  PubMed  Google Scholar 

  19. Furukawa T, Kubota T, Hoffman RM. Clinical applications of the histoculture drug response assay. Clin Cancer Res. 1995;1:305–311.

    CAS  PubMed  Google Scholar 

  20. Kubota T, Sasano N, Abe O, et al. Potential of the histoculture drug-response assay to contribute to cancer patient survival. Clin Cancer Res. 1995;1:1537–1543.

    CAS  PubMed  Google Scholar 

  21. Pretlow TG, Wolman SR, Micale MA, et al. Xenografts of primary human prostatic carcinoma. J Natl Cancer Inst. 1993;85:394–398.

    Article  CAS  PubMed  Google Scholar 

  22. Nagabhushan M, Miller CM, Pretlow TP, et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res 1996;56:3042–3046.

    CAS  PubMed  Google Scholar 

  23. Chen CT, Au JL-S, Wientjes MG. Pharmacodynamics of doxorubicin in human prostate tumors. Clin Cancer Res. 1998;4:277–282.

    CAS  PubMed  Google Scholar 

  24. Chai M, Wientjes MG, Badalament RA, Burgers JK, Au JL-S. Pharmacokinetics of intravesical doxorubicin in superficial bladder cancer patients. J Urol. 1994;152:374–378.

    CAS  PubMed  Google Scholar 

  25. Cox SK, Wilke AV, Frazier D. Determination of adriamycin in plasma and tissue biopsies. J Chromatogr. 1991;564:322–329.

    Article  CAS  PubMed  Google Scholar 

  26. Schultz JS, Armstrong W. Permeability of interstitial space of muscle (rat diaphragm) to solutes of different molecular weights. J Pharm Sci. 1978;67:696–705.

    Article  CAS  PubMed  Google Scholar 

  27. Fox JR, Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res. 1979;18:255–276.

    Article  CAS  PubMed  Google Scholar 

  28. Stohrer M, Boucher Y, Stangassinger M, Jain RK. Oncotic pressure in solid tumor is elevated. Cancer Res 2000;60:4251–4255.

    CAS  PubMed  Google Scholar 

  29. Kaye SB. Multidrug resistance: clinical relevance in solid tumours and strategies for circumvention. Curr Opin Oncol. 1998; 1:S15-S19.

    Google Scholar 

  30. Chen CT, Au JL-S, Wientjes MG. Androgen-dependent and-independent human prostate xenograft tumors as models for drug development. Cancer Res. 1998;58:2777–2783.

    CAS  PubMed  Google Scholar 

  31. Van Brussel JP, van Steenbrugge GJ, Romijn JC, Schroder, FH, Mickisch GH. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur J Cancer. 1999;35:664–671.

    Article  PubMed  Google Scholar 

  32. Jang S-H, Wientjes MG, Au JL-S. Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment effect of treatment schedule. J Pharmacol Exper Therap. 2001; in press.

  33. Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96:133–139.

    Article  CAS  PubMed  Google Scholar 

  34. Speth PAJ, Linssen PCM, Holdrinet RSG, Haanen C. Plasma and cellular adriamycin concentrations in patients with myeloma treated with ninety-six-hour continuous infusion. Clin Pharmacol Ther 1987;41:661–665.

    Article  CAS  PubMed  Google Scholar 

  35. Bugat R, Robert J, Herrera A, et al. Clinical and pharmacokinetic study of 96-h infusions of doxorubicin in advanced cancer patients. Eur J Cancer Clin Oncol. 1989;25:505–511.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guill Wientjes.

Additional information

Published: May 15, 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J.H., Chen, CT., Au, J.L.S. et al. Time-and concentration-dependent penetration of doxorubicin in prostate tumors. AAPS PharmSci 3, 15 (2001). https://doi.org/10.1208/ps030215

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps030215

Key words

Navigation