Skip to main content

Advertisement

Log in

Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Biochanin A(BCA) is a dietary isoflavone present in legumes, most notably red clover, and in many herbal dietary supplements. BCA has been reported to have chemopreventive properties and is metabolized to the isoflavone genistein (GEN), BCA conjugates, and GEN conjugates. The metabolites may contribute to the chemopreventive effects of BCA. The absorption, metabolism, and disposition of BCA have not been determined in rats. Our objective was to evaluate the pharmacokinetics and metabolism of BCA in rats. Male Sprague-Dawley rats were administered BCA by intravenous injection (1 and 5 mg/kg), by intraperitoneal injection (5 and 50 mg/kg), and orally (5 and 50 mg/kg). Plasma and bile samples were enzymatically hydrolyzed in vitro to determine conjugate concentrations for BCA and GEN. Equilibrium dialysis was used to determine protein binding. The BCA and GEN concentrations in plasma, urine, and bile were determined by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The pharmacokinetic parameters of BCA were analyzed by noncompartmental analysis. Significant levels of BCA conjugates and GEN conjugates were detected in plasma and bile. Both BCA and GEN were found to have a high clearance and a large apparent volume of distribution; the bioavailability of both was poor (<4%). Reentry peaks were evident after oral administration of both BCA and GEN, suggesting enterohepatic cycling. The free fraction of BCA in rat plasma was 1.5%. A2-compartment model that included both linear and nonlinear clearance terms and enterohepatic recirculation best described the plasma data. This represents the first evaluation of the dose-dependent pharmacokinetics and metabolism of BCA in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dai Q, Franke AA, Jin F, et al. Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai.Cancer Epidemiol Biomarkers Prev. 2002;11:815–821.

    CAS  PubMed  Google Scholar 

  2. Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health.J Am Coll Cardiol. 2000;35:1403–1410.

    Article  CAS  PubMed  Google Scholar 

  3. Nikander E, Metsa-Heikkila M, Ylikorkala O, Tiitinen A. Effects of phytoestrogens on bone turnover in postmenopausal women with a history of breast cancer.J Clin Endocrinol Metab. 2004;89:1207–1212.

    Article  CAS  PubMed  Google Scholar 

  4. Arora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system.Arch Biochem Biophys. 1998;356:133–141.

    Article  CAS  PubMed  Google Scholar 

  5. Barnes S. The chemopreventive properties of soy isoflavonoids in animal models of breast cancer.Breast Cancer Res Treat. 1997;46:169–179.

    Article  CAS  PubMed  Google Scholar 

  6. Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis.J Nutr. 1995;125:790S-797S.

    CAS  PubMed  Google Scholar 

  7. Cassady JM, Zennie TM, Chae YH, Ferin MA, Portuondo NE, Baird WM. Use of a mammalian cell culture benzo(a)pyrene metabolism assay for the detection of potential anticarcinogens from natural products: inhibition of metabolism by biochanin A, an isoflavone from Trifolium pratense L.Cancer Res. 1988;48:6257–6261.

    CAS  PubMed  Google Scholar 

  8. Ying C, Hsu JT, Hung HC, Lin DH, Chen LF, Wang LK. Growth and cell cycle regulation by isoflavones in human breast carcinoma cells.Reprod Nutr Dev. 2002;42:55–64.

    Article  CAS  PubMed  Google Scholar 

  9. Onozawa M, Kawamori T, Baba M, et al. Effects of a soybean isoflavone mixture on carcinogenesis in prostate and seminal vesicles of F344 rats.Jpn J Cancer Res. 1999;90:393–398.

    Article  CAS  PubMed  Google Scholar 

  10. Constantinou AI, Mehta RG, Vaughan A. Inhibition of N-methyl-N-nitrosourea-induced mammary tumors in rats by the soybean isoflavones.Anticancer Res. 1996;16:3293–3298.

    CAS  PubMed  Google Scholar 

  11. Lamartiniere CA, Moore JB, Brown NM, Thompson R, Hardin MJ, Barnes S. Genistein suppresses mammary cancer in rats.Carcinogenesis. 1995;16:2833–2840.

    Article  CAS  PubMed  Google Scholar 

  12. Yamakoshi J, Piskula MK, Izumi T, et al. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits.J Nutr. 2000;130:1887–1893.

    CAS  PubMed  Google Scholar 

  13. Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice.J Nutr. 1998;128:954–959.

    CAS  PubMed  Google Scholar 

  14. Merz-Demlow BE, Duncan AM, Wangen KE, et al. Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women.Am J Clin Nutr. 2000;71:1462–1469.

    CAS  PubMed  Google Scholar 

  15. Gotoh T, Yamada K, Yin H, Ito A, Kataoka T, Dohi K. Chemoprevention of N-nitroso-N-methylurea-induced rat mammary carcinogenesis by soy foods or biochanin A.Jpn J Cancer Res. 1998;89:137–142.

    Article  CAS  PubMed  Google Scholar 

  16. Lee YS, Seo JS, Chung HT, Jang JJ. Inhibitory effects of biochanin A on mouse lung tumor induced by benzo(a)pyrene.J Korean Med Sci. 1991;6:325–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rice L, Samedi VG, Medrano TA, et al. Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts.Prostate. 2002;52:201–212.

    Article  CAS  PubMed  Google Scholar 

  18. Atkinson C, Compston JE, Day NE, Dowsett M, Bingham SA. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial.Am J Clin Nutr. 2004;79:326–333.

    CAS  PubMed  Google Scholar 

  19. Nestel P, Cehun M, Chronopoulos A, DaSilva L, Teede H, McGrath B. A biochanin-enriched isoflavone from red clover lowers LDL cholesterol in men.Eur J Clin Nutr. 2004;58:403–408.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Yang X, Morris ME. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport.Mol Pharmacol. 2004;65:1208–1216.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport.J Pharmacol Exp Ther. 2003;304:1258–1267.

    Article  CAS  PubMed  Google Scholar 

  22. Tolleson WH, Doerge DR, Churchwell MI, Marques MM, Roberts DW. Metabolism of biochanin A and formononetin by human liver microsomes in vitro.J Agric Food Chem. 2002;50:4783–4790.

    Article  CAS  PubMed  Google Scholar 

  23. Setchell KD, Brown NM, Desai P, et al. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements.J Nutr. 2001;131:1362S-1375S.

    CAS  PubMed  Google Scholar 

  24. Hu M, Krausz K, Chen J, et al. Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones.Drug Metab Dispos. 2003;31:924–931.

    Article  CAS  PubMed  Google Scholar 

  25. Yanagihara K, Ito A, Toge T, Numoto M. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract.Cancer Res. 1993;53:5815–5821.

    CAS  PubMed  Google Scholar 

  26. Roberts DW, Doerge DR, Churchwell MI, Gamboa da Costa G, Marques MM, Tolleson WH. Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover).J Agric Food Chem. 2004;52:6623–6632.

    Article  CAS  PubMed  Google Scholar 

  27. Kulling SE, Lehmann L, Metzler M. Oxidative metabolism and genotoxic potential of major isoflavone phytoestrogens.J Chromatogr B Analyt Technol Biomed Life Sci. 2002;777:211–218.

    Article  CAS  PubMed  Google Scholar 

  28. Jia X, Chen J, Lin H, Hu M. Disposition of flavonoids via enteric recycling: enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates.J Pharmacol Exp Ther. 2004;310:1103–1113.

    Article  CAS  PubMed  Google Scholar 

  29. Peterson TG, Ji GP, Kirk M, Coward L, Falany CN, Barnes S. Metabolism of the isoflavones genistein and biochanin A in human breast cancer cell lines.Am J Clin Nutr. 1998;68:1505S-1511S.

    CAS  PubMed  Google Scholar 

  30. Sfakianos J, Coward L, Kirk M, Barnes S. Intestinal uptake and biliary excretion of the isoflavone genistein in rats.J Nutr. 1997;127:1260–1268.

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S. Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations.J Nutr. 1999;129:399–405.

    CAS  PubMed  Google Scholar 

  32. Wong CK, Keung WM. Daidzein sulfoconjugates are potent inhibitors of sterol sulfatase (EC 3.1.6.2).Biochem Biophys Res Commun. 1997;233:579–583.

    Article  CAS  PubMed  Google Scholar 

  33. Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans, I: review of 97 bioavailability studies.Am J Clin Nutr. 2005;81:230S-242S.

    CAS  PubMed  Google Scholar 

  34. Shelnutt SR, Cimino CO, Wiggins PA, Ronis MJ, Badger TM. Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage.Am J Clin Nutr. 2002;76:588–594.

    CAS  PubMed  Google Scholar 

  35. Coldham NG, Zhang AQ, Key P, Sauer MJ. Absolute bioavailability of [14C] genistein in the rat: plasma pharmacokinetics of parent compound, genistein glucuronide and total radioactivity.Eur J Drug Metab Pharmacokinet. 2002;27:249–258.

    Article  CAS  PubMed  Google Scholar 

  36. Piskula MK. Factors affecting flavonoids absorption.Biofactors. 2000;12:175–180.

    Article  CAS  PubMed  Google Scholar 

  37. Wajima T, Yano Y, Oguma T. A pharmacokinetic model for analysis of drug disposition profiles undergoing enterohepatic circulation.J Pharm Pharmacol. 2002;54:929–934.

    Article  CAS  PubMed  Google Scholar 

  38. Mizunuma H, Kanazawa K, Ogura S, Otsuka S, Nagai H. Anticarcinogenic effects of isoflavones may be mediated by genistein in mouse mammary tumor virus-induced breast cancer.Oncology. 2002;62:78–84.

    Article  CAS  PubMed  Google Scholar 

  39. Peterson TG, Coward L, Kirk M, Falany CN, Barnes S. The role of metabolism in mammary epithelial cell growth inhibition by the isoflavones genistein and biochanin A.Carcinogenesis. 1996;17:1861–1869.

    Article  CAS  PubMed  Google Scholar 

  40. Howes J, Waring M, Huang L, Howes LG. Long-term pharmacokinetics of an extract of isoflavones from red clover (Trifolium pratense).J Altern Complement Med. 2002;8:135–142.

    Article  PubMed  Google Scholar 

  41. Chen J, Halls SC, Alfaro JF, Zhou Z, Hu M. Potential beneficial metabolic interactions between tamoxifen and isoflavones via cytochrome P450-mediated pathways in female rat liver microsomes.Pharm Res. 2004;21:2095–2104.

    Article  CAS  PubMed  Google Scholar 

  42. Mallis LM, Sarkahian AB, Harris HA, Zhang MY, McConnell OJ. Determination of rat oral bioavailability of soy-derived phytoestrogens using an automated on-column extraction procedure and electrospray tandem mass spectrometry.J Chromatogr B Analyt Technol Biomed Life Sci. 2003;796:71–86.

    Article  CAS  PubMed  Google Scholar 

  43. Lee YS, Kim TH, Cho KJ, Jang JJ. Inhibitory effects of biochanin A on benzo(a)pyrene induced carcinogenesis in mice.In Vivo. 1992;6:283–286.

    CAS  PubMed  Google Scholar 

  44. Supko JG, Malspeis L. Plasma pharmacokinetics of genistein in mice.Int J Oncol. 1995;7:847–854.

    CAS  PubMed  Google Scholar 

  45. Ader P, Wessmann A, Wolffram S. Bioavailability and metabolism of the flavonol quercetin in the pig.Free Radic Biol Med. 2000;28:1056–1067.

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition.J Pharmacol Exp Ther. 2003;304:1228–1235.

    Article  CAS  PubMed  Google Scholar 

  47. Strandgarden K, Hoglund P, Gronquist L, Svensson L, Gunnarsson PO. Absorption and disposition including enterohepatic circulation of (14C) roquinimex after oral administration to healthy volunteers.Biopharm Drug Dispos. 2000;21:53–67.

    Article  CAS  PubMed  Google Scholar 

  48. Ouellet DM, Pollack GM. Biliary excretion and enterohepatic recirculation of morphine-3-glucuronide in rats.Drug Metab Dispos. 1995;23:478–484.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn E. Morris.

Additional information

Published: July 7, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, Y.J., Sagawa, K., Frederick, K. et al. Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats. AAPS J 8, 51 (2006). https://doi.org/10.1208/aapsj080351

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080351

Keywords

Navigation