Skip to main content
Log in

Causes and consequences of methamphetamine and MDMA toxicity

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) and its derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) are 2 substituted amphetamines with very high abuse liability in the United States. These amphetamine-like stimulants have been associated with loss of multiple markers for dopaminergic and serotonergic terminals in the brain. Among other causes, oxidative stress, excitotoxicity and mitochondrial dysfunction appear to play a major role in the neurotoxicity produced by the substituted amphetamines. The present review will focus on these events and how they interact and converge to produce the monoaminergic depletions that are typically observed after METH or MDMA administration. In addition more recently identified consequences of METH or MDMA-induced oxidative stress, excitotoxicity, and mitochondrial dysfunction are described in relation to the classical markers of METH-induced damage to dopamine terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hotchkiss AJ, Morgan ME, Gibb JW. The long-term effects of multiple doses of methamphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase and glutamate decarboxylase activities.Life Sci. 1979;25:1373–1378.

    Article  PubMed  CAS  Google Scholar 

  2. Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J. Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine.Brain Res. 1980;181:151–160.

    Article  PubMed  CAS  Google Scholar 

  3. Ricaurte GA, Schuster CR, Seiden LS. Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study.Brain Res. 1980;193:153–163.

    Article  PubMed  CAS  Google Scholar 

  4. Stephans SE, Yamamoto BK. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux.Synapse. 1994;17:203–209.

    Article  PubMed  CAS  Google Scholar 

  5. Raiteri M, Cerrito F, Cervoni AM, Levi G. Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine.J Pharmacol Exp Ther. 1979;208:195–202.

    PubMed  CAS  Google Scholar 

  6. Michel PP, Hefti F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture.J Neurosci Res. 1990;26:428–435.

    Article  PubMed  CAS  Google Scholar 

  7. Nash JF, Yamamoto BK. Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine.Brain Res. 1992;581:237–243.

    Article  PubMed  CAS  Google Scholar 

  8. Mark KA, Soghomonian JJ, Yamamoto BK. High-dose methamphetamine acutely activates the striatoningral pathway to increase striatal glutamate and mediate long-term dopamine toxicity.J Neurosci. 2004;24:11449–11456.

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto BK, Gudelsky G, Stephans SE. Amphetamine neurotoxicity. Roles for dopamine, glutamate and oxidative stress. In:Progress in HPLC-HPCE. Utrecht, The Netherlands: VSP; 1998;223–244.

    Google Scholar 

  10. Rocher C, Gardier AM. Effects of repeated systemic administration of d-fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine using in vivo microdialysis.Naunyn Schmiedebergs Arch Pharmacol. 2001;363:422–428.

    Article  PubMed  CAS  Google Scholar 

  11. Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress.Pharmacol Ther. 2003;99:45–53.

    Article  PubMed  CAS  Google Scholar 

  12. Brown JM, Quinton MS, Yamamoto BK. Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite.J Neurochem. 2005;95:429–436.

    Article  PubMed  CAS  Google Scholar 

  13. Hotchkiss AJ, Gibb JW. Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain.J Pharmacol Exp Ther. 1980;214:257–262.

    PubMed  CAS  Google Scholar 

  14. Schmidt CJ, Taylor VL. Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine.Biochem Pharmacol. 1987;36:4095–4102.

    Article  PubMed  CAS  Google Scholar 

  15. Eisch AJ, Marshall JF. Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury.Synapse. 1998;30:433–445.

    Article  PubMed  CAS  Google Scholar 

  16. Seiden LS, Fischman MW, Schuster CR. Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys.Drug Alcohol Depend. 1976;1:215–219.

    Article  PubMed  CAS  Google Scholar 

  17. Finnegan KT, Ricaurte G, Seiden LS, Schuster CR. Altered sensitivity to d-methylamphetamine, apomorphine, and haloperidol in rhesus monkeys depleted of caudate dopamine by repeated administration of d-methylamphetamine.Psychopharmacology (Berl). 1982;77:43–52.

    Article  CAS  Google Scholar 

  18. Green AR, De Souza RJ, Williams JL, Murray TK, Cross AJ. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole.Neuropharmacology. 1992;31:315–321.

    Article  PubMed  CAS  Google Scholar 

  19. Woolverton WL, Ricaurte GA, Forno LS, Seiden LS. Long-term effects of chronic methamphetamine administration in rhesus monkeys.Brain Res. 1989;486:73–78.

    Article  PubMed  CAS  Google Scholar 

  20. McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone uses: evidence from positron emission tomography studies with [11C]WIN-35, 428.J Neurosci. 1998;18:8417–8422.

    PubMed  CAS  Google Scholar 

  21. Battaglia G, Yeh SY, O'Hearn E, Molliver ME, Kuhar MJ, de Souza EB. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites.J Pharmacol Exp Ther. 1987;242:911–916.

    PubMed  CAS  Google Scholar 

  22. O'Hearn E, Battaglia G, de Souza EB, Kuhar MJ, Molliver ME. Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity.J Neurosci. 1988;8:2788–2803.

    PubMed  Google Scholar 

  23. Finnegan KT, Ricaurte GA, Ritchie LD, Irwin I, Peroutka SJ, Langston JW. Orally administered MDMA causes a long-term depletion of serotonin in rat brain.Brain Res. 1988;447:141–144.

    Article  PubMed  CAS  Google Scholar 

  24. Ricaurte GA, Forno LS, Wilson MA. (+/−)3,4-Methylene-dioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates.JAMA. 1988;260:51–55.

    Article  PubMed  CAS  Google Scholar 

  25. Steele TD, McCann UD, Ricaurte GA. 3,4-Methylenedioxymethamphetamine (MDMA; “Ecstasy”): pharmacology and toxicology in animals and humans.Addiction. 1994;89:539–551.

    Article  PubMed  CAS  Google Scholar 

  26. McCann UD, Ridenour A, Shaham Y, Ricaurte GA. Serotonin neurotoxicity after (+/−)3,4-methylenedioxymethamphetamine (MDMA; “Ecstasy”): a controlled study in humans.Neuropsychopharmacology. 1994;10:129–138.

    PubMed  CAS  Google Scholar 

  27. Malberg JE, Sabol KE, Seiden LS. Co-administration of MDMA with drugs that protect against MDMA neurotoxicity produces different effects on body temperature in the rat.J Pharmacol Exp Ther. 1996;278:258–267.

    PubMed  CAS  Google Scholar 

  28. Fleckenstein AE, Wilkins DG, Gibb JW, Hanson GR. Interaction between hyperthermia and oxygen radical formation in the 5-hydroxytryptaminergic response to a single methamphetamine administration.J Pharmacol Exp Ther. 1997;283:281–285.

    PubMed  CAS  Google Scholar 

  29. Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain.Brain Res. 1982;235:93–103.

    Article  PubMed  CAS  Google Scholar 

  30. Eisch AJ, Schmued LC, Marshall JF. Characterizing cortical neuron injury with fluoro-jade labeling after a neurotoxic regimen of methamphetamine.Synapse. 1998;30:329–333.

    Article  PubMed  CAS  Google Scholar 

  31. O'Dell SJ, Marshall JF. Neurotoxic regimens of methamphetamine induce persistent expression of phospho-c-Jun in somatosensory cortex and substantia nigra.Synapse. 2005;55:137–147.

    Article  PubMed  CAS  Google Scholar 

  32. O'Callaghan JP, Sriram K. Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity.Expert Opin Drug Saf. 2005;4:433–442.

    Article  PubMed  Google Scholar 

  33. Pu C, Fisher JE, Cappon GD, Vorhees CV. The effects of amfonelic acid, a dopamine uptake inhibitor, on methamphetamine-induced dopaminergic terminal degeneration and astrocytic response in rat striatum.Brain Res. 1994;649:217–224.

    Article  PubMed  CAS  Google Scholar 

  34. Miller DB, O'Callaghan JP. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.J Pharmacol Exp Ther. 1994;270:752–760.

    PubMed  CAS  Google Scholar 

  35. Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS. Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain.J Pharmacol Exp Ther. 1987;241:338–345.

    PubMed  CAS  Google Scholar 

  36. Stone DM, Johnson M, Hanson GR, Gibb JW. Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulfhydryl sites.Eur J Pharmacol. 1989;172:93–97.

    Article  PubMed  CAS  Google Scholar 

  37. Gibb JW, Johnson M, Hanson GR. Neurochemical basis of neurotoxicity.Neurotoxicology. 1990;11:317–321.

    PubMed  CAS  Google Scholar 

  38. Wagner GC, Carelli RM, Jarvis MF. Ascorbic acid reduces the dopamine depletion induced by methamphetamine and the 1-methyl-4-phenyl pyridinium ion.Neuropharmacology. 1986;25:559–561.

    Article  PubMed  CAS  Google Scholar 

  39. Gudelsky GA. Effect of ascorbate and cysteine on the 3,4-methylenedioxymethamphetamine-induced depletion of brain serotonin.J Neural Transm. 1996;103:1397–1404.

    Article  PubMed  CAS  Google Scholar 

  40. Colado MI, Green AR. The spin trap reagent alpha-phenyl-N-tert-butyl nitrone prevents “ecstasy”-induced neurodegeneration of 5-hydroxytryptamine neurones.Eur J Pharmacol. 1995;280:343–346.

    Article  PubMed  CAS  Google Scholar 

  41. Fukami G, Hashimoto K, Koike K, Okamura N, Shimizu E, Iyo M. Effect of antioxidant N-acetyl-L-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine.Brain Res. 2004;1016:90–95

    Article  PubMed  CAS  Google Scholar 

  42. Stone DM, Johnson M, Hanson GR, Gibb JW. Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine.J Pharmacol Exp Ther. 1988;247:79–87.

    PubMed  CAS  Google Scholar 

  43. Schmidt CJ, Ritter JK, Sonsalla PK, Hanson GR, Gibb JW. Role of dopamine in the neurotoxic effects of methamphetamine.J Pharmacol Exp Ther. 1985;233:539–544.

    PubMed  CAS  Google Scholar 

  44. Gudelsky GA, Nash JF. Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions.J Neurochem. 1996;66:243–249.

    PubMed  CAS  Google Scholar 

  45. Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”).Pharmacol Rev. 2003;55:463–508.

    Article  PubMed  CAS  Google Scholar 

  46. Marek GJ, Vosmer G, Seiden LS. Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons.Brain Res. 1990;513:274–279.

    Article  PubMed  CAS  Google Scholar 

  47. Sprague JE, Everman SL, Nichols DE. An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine.Neurotoxicology. 1998;19:427–441.

    PubMed  CAS  Google Scholar 

  48. Breier JM, Bankson MG, Yamamoto BK. L-tyrosine contributes to (+)-3,4-methylenedioxymethamphetamine-induced serotonin depletions.J Neurosci. 2006;26:290–299.

    Article  PubMed  CAS  Google Scholar 

  49. Bai F, Jones DC, Lau SS, Monks TJ. Serotonergic neurotoxicity of 3,4-(+/−)-methylenedioxyamphetamine and 3,4-(+/−)-methylendioxymethamphetamine (ecstasy) is potentiated by inhibition of gamma-glutamyl transpeptidase.Chem Res Toxicol. 2001;14:863–870.

    Article  PubMed  CAS  Google Scholar 

  50. Jones DC, Lau SS, Monks TJ. Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells.J Pharmacol Exp Ther. 2004;311:298–306.

    Article  PubMed  CAS  Google Scholar 

  51. Jiang XR, Wrona MZ, Alguindigue SS, Dryhurst G. Reactions of the putative neurotoxin tryptamine-4,5-dione with L-cysteine and other thiols.Chem Res Toxicol. 2004;17:357–369.

    Article  PubMed  CAS  Google Scholar 

  52. Colado MI, O'Shea E, Granados R, Murray TK, Green AR. In vivo evidence for free radical involvement in the degeneration of rat brain 5-HT following administration of MDMA (‘ecstasy’) and p-chloroamphetamine but not the degeneration following fenfluramine.Br J Pharmacol. 1997;121:889–900.

    Article  PubMed  CAS  Google Scholar 

  53. Shankaran M, Yamamoto BK, Gudelsky GA. Involvement of the serotonin transporter in the formation of hydroxyl radicals induced by 3,4-methylenedioxymethamphetamine.Eur J Pharmacol. 1999;385:103–110.

    Article  PubMed  CAS  Google Scholar 

  54. Shankaran M, Yamamoto BK, Gudelsky GA. Mazindol attenuates the 3,4-methylenedioxymethamphetamine-induced formation of hydroxyl radicals and long-term depletion of serotonin in the striatum.J Neurochem. 1999;72:2516–2522.

    Article  PubMed  CAS  Google Scholar 

  55. Giovanni A, Liang LP, Hastings TG, Zigmond MJ. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine.J Neurochem. 1995;64:1819–1825.

    PubMed  CAS  Google Scholar 

  56. Iman SZ, Yazal J, Newport GD, et al. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts.Ann NY Acad Sci. 2001;939:366–380.

    Article  Google Scholar 

  57. Shankaran M, Yamamoto BK, Gudelsky GA. Ascorbic acid prevents 3,4-methylenedioxymethamphetamine (MDMA)-induced hydroxyl radical formation and the behavioral and neurochemical consequences of the depletion of brain 5-HT.Synapse. 2001;40:55–64.

    Article  PubMed  CAS  Google Scholar 

  58. Sprague JE, Nichols DE. The monoamine oxidase-B inhibitor L-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits.J Pharmacol Exp Ther. 1995;273:667–673.

    PubMed  CAS  Google Scholar 

  59. Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress.J Pharmacol Exp Ther. 1998;287:107–114.

    PubMed  CAS  Google Scholar 

  60. Acikgoz O, Gonenc S, Kayatekin BM, et al. Methamphetamine causes lipid peroxidation and an increase in superoxide dismutase activity in the rat striatum.Brain Res. 1998;813:200–202.

    Article  PubMed  CAS  Google Scholar 

  61. Gluck MR, Moy LY, Jayatilleke E, Hogan KA, Manzino L, Sonsalla PK. Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment.J Neurochem. 2001;79:152–160.

    Article  PubMed  CAS  Google Scholar 

  62. Itzhak Y, Ali SF. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.J Neurochem. 1996;67:1770–1773.

    PubMed  CAS  Google Scholar 

  63. Colado MI, Camarero J, Mechan AO, et al. A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) on dopamine neurones in mouse brain.Br J Pharmacol. 2001;134:1711–1723.

    Article  PubMed  CAS  Google Scholar 

  64. Darvesh AS, Yamamoto BK, Gudelsky GA. Evidence for the involvement of nitric oxide in 3,4-methylenedioxymethamphetamine-induced serotonin depletion in the rat brain.J Pharmacol Exp Ther. 2005;312:694–701.

    Article  PubMed  CAS  Google Scholar 

  65. Kuhn DM, Sadidi M, Liu X. Peroxynitrite-induced nitration of tyrosine hydroxylase: identification of tyrosines 423, 428, and 432 as sites of modification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tyrosine-scanning mutagenesis.J Biol Chem. 2002;277:14336–14342.

    Article  PubMed  CAS  Google Scholar 

  66. Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity.J Mol Med. 2000; 78:3–13.

    Article  PubMed  CAS  Google Scholar 

  67. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders.N Engl J Med. 1994;330:613–622.

    Article  PubMed  CAS  Google Scholar 

  68. Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.Science. 1989;243:398–400.

    Article  PubMed  CAS  Google Scholar 

  69. Finnegan KT, Taraska T. Effects of glutamate antagonists on methamphetamine and 3,4-methylenedioxymethamphetamine-induced striatal dopamine release in vivo.J Neurochem. 1996;66:1949–1958.

    PubMed  CAS  Google Scholar 

  70. Albers DS, Sonsalla PK. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.J Pharmacol Exp Ther. 1995;275:1104–1114.

    PubMed  CAS  Google Scholar 

  71. Battaglia G, Fornai F, Busceti CL, et al. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity.J Neurosci. 2002;22:2135–2141.

    PubMed  CAS  Google Scholar 

  72. Burrows KB, Meshul CK. Methamphetamine alters presynaptic glutamate immunoreactivity in the caudate nucleus and motor cortex.Synapse. 1997;27:133–144.

    Article  PubMed  CAS  Google Scholar 

  73. Mark KA, Eyerman DJ, Yamamoto BK. The Effects of Methamphetamine on the Vesicular Glutamate Transporter 1. Program No. 681. 18.2005 Abstract Viewer/Itinerary Planner. 2005; Available at: http://sfn.scholarone.com/itin2005/main.html? new_page_id=126&abstract_id=16249&p_num=681.18&is_tech=0. Accessed November 15, 2005.

  74. Siman R, Noszek JC, Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage.J Neurosci. 1989;9:1579–1590.

    PubMed  CAS  Google Scholar 

  75. Minger SL, Geddes JW, Holtz ML, et al. Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia.Brain Res. 1998;810:181–199.

    Article  PubMed  CAS  Google Scholar 

  76. Staszewski RD. Yamamoto BK. Methamphetamine-induced spectrin proteolysis in the rat striatum.J Neurochem. 2006;96:1267–1276.

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M. No NO from NO synthase.Proc Natl Acad Sci USA. 1996;93:14492–14497.

    Article  PubMed  CAS  Google Scholar 

  78. Kahlert S, Zundorf G, Reiser G. Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes.J Neurosci Res. 2005;79:262–271.

    Article  PubMed  CAS  Google Scholar 

  79. Chan P, Di Monte DA, Luo JJ, DeLanney LE, Irwin I, Langston JW. Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity.J Neurochem. 1994;62:2484–2487.

    PubMed  CAS  Google Scholar 

  80. Nixdorf WL, Burrows KB, Gudelsky GA, Yamamoto BK. Enhancement of 3,4-methylenedioxymethamphetamine neurotoxicity by the energy inhibitor malonate.J Neurochem. 2001;77:647–654.

    Article  PubMed  CAS  Google Scholar 

  81. Albers DS, Zeevalk GD, Sonsalla PK. Damage to dopaminergic nerve terminals in mice by combined treatment of intrastriatal malonate with systemic methamphetamine or MPTP.Brain Res. 1996;718:217–220.

    Article  PubMed  CAS  Google Scholar 

  82. Burrows KB, Nixdorf WL, Yamamoto BK. Central administration of methamphetamine synergizes with metabolic inhibition to deplete striatal monoamines.J Pharmacol Exp Ther. 2000;292:853–860.

    PubMed  CAS  Google Scholar 

  83. Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK. Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum.J Neurochem. 1998;71:613–621.

    Article  PubMed  CAS  Google Scholar 

  84. Wan FJ, Lin HC, Kang BH, Tseng CJ, Tung CS. D-amphetamine-induced depletion of energy and dopamine in the rat striatum is attenuated by nicotinamide pretreatment.Brain Res Bull. 1999;50:167–171.

    Article  PubMed  CAS  Google Scholar 

  85. Zeevalk GD, Derr-Yellin E, Nicklas WJ. Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade.J Pharmacol Exp Ther. 1995;275:1124–1130.

    PubMed  CAS  Google Scholar 

  86. Darvesh AS, Shankaran M, Gudelsky GA. 3,4-Methylenedioxymethamphetamine produces glycogenolysis and increases the extracellular concentration of glucose in the rat brain.J Pharmacol Exp Ther. 2002;301:138–144.

    Article  PubMed  CAS  Google Scholar 

  87. Burrows KB, Gudelsky G, Yamamoto BK. Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration.Eur J Pharmacol. 2000;398:11–18.

    Article  PubMed  CAS  Google Scholar 

  88. Kushnareva YE, Wiley SE, Ward MW, Andreyev AY, Murphy AN. Excitotoxic injury to mitochondria isolated from cultured neurons.J Biol Chem. 2005;280:28894–28902.

    Article  PubMed  CAS  Google Scholar 

  89. Brown JM, Hanson GR, Fleckenstein AE, Methamphetamine rapidly decreases vesicular dopamine uptake.J Neurochem. 2000;74:2221–2223.

    Article  PubMed  CAS  Google Scholar 

  90. Riddle EL, Topham MK, Haycock JW, Hanson GR, Fleckenstein AE. Differential trafficking of the vesicular monoamine transporter-2 by methamphetamine and cocaine.Eur J Pharmacol. 2002; 449:71–74.

    Article  PubMed  CAS  Google Scholar 

  91. Eyerman DJ, Yamamoto BK. Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum.J Pharmacol Exp Ther. 2005;312:160–169.

    Article  PubMed  CAS  Google Scholar 

  92. Larsen KE, Fon EA, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons involves antophagy and upregulation of dopamine synthesis.J Neurosci. 2002;22:8951–8960.

    PubMed  CAS  Google Scholar 

  93. Eyerman DJ, Yamamoto BK. A Rapid and Long-lasting Decrease in Vesicular Monoamine Transporter 2 Immunoreactivity in Striatal Synaptosomes After Methamphetamine. Program No. 981.17.2005. Abstract Viewer/Itinerary Planner 2005; Available at: http://sfn. scholarone.com/itin2005/main.html? new_page_id=126&abstract_id=17188&p_num=918.17&is_tech=0. Accessed April 27, 2006.

  94. Hatzipetros T, Yamamoto BK. Dopaminergic and GABAergic modulation of glutamate release from subthalamic nucleus efferents to the rat substantia nigra.Brain Res. 2006;1076:60–67.

    Article  PubMed  CAS  Google Scholar 

  95. Bustamante D, You ZB, Castel MN, et al. Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat.J Neurochem. 2002:83:645–654.

    Article  PubMed  CAS  Google Scholar 

  96. Hatzipetros T, Yamamoto BK. Methamphetamine-induced Spectrin Proteolysis and Dopamine Depletions in the Substantia Nigra. Program No. 563.15.2004. Abstract Viewer/Itinerary Planner. 2004;Available at: http://sfn.scholarone.com/itin2004/main.html? new_page_id=126&abstract_id=10146&p_num=563.15&is_tech=0. Accessed April 27, 2006.

  97. Hatzipetros T, Yamamoto BK. The Effects of Haloperidol Treatment After Methamphetamine On the Neuronal Population of the Rat Substantia Nigra. Program No. 918.5.2005. Abstract Viewer/Itinerary Planner. 2005;Available at: http://sfn.scholarone.com/itin2005/main.html? new_page_id=126&abstract_id=3411&p_num=918.5&is_tech=0. Accessed April 27, 2006.

  98. Stanimirovic DB, Wong J, Ball R, Durkin JP. Free radical-induced endothelial membrane dysfunction at the site of blood-brain barrier: relationship between lipid peroxidation, Na,K-ATPase activity, and 51 Cr release.Neurochem Res. 1995;20:1417–1427.

    Article  PubMed  CAS  Google Scholar 

  99. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease.Pharmacol Rev. 2005;57:173–185.

    Article  PubMed  CAS  Google Scholar 

  100. Bankson MG, Yamamoto BK. MDMA Causes Long-term Increases in Blood Brain Barrier Permeability. Program No. 190.4.2005 Abstract Viewer/Itinerary Planner 2005; Available at: http://sfn. scholarone.com/itin2005/main.html? new_page_id=126&abstract_id=15187&p_num=190.4&is_tech=0 Accessed April 27, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan K. Yamamoto.

Additional information

Published: May 12, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinton, M.S., Yamamoto, B.K. Causes and consequences of methamphetamine and MDMA toxicity. AAPS J 8, 38 (2006). https://doi.org/10.1007/BF02854904

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854904

Keywords

Navigation