Skip to main content
Log in

Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Synthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the “window” between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH·. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis. For the two most active SkQs, namely SkQ1 and SkQR1, C 1/2 values for inhibition of the H2O2-induced apoptosis in fibroblasts appear to be as low as 1·10−11 and 8·10−13 M, respectively. SkQR1, a fluorescent representative of the SkQ family, specifically stains a single type of organelles in the living cell, i.e. energized mitochondria. Such specificity is explained by the fact that it is the mitochondrial matrix that is the only negatively-charged compartment inside the cell. Assuming that the Δψ values on the outer cell and inner mitochondrial membranes are about 60 and 180 mV, respectively, and taking into account distribution coefficient of SkQ1 between lipid and water (about 13,000: 1), the SkQ1 concentration in the inner leaflet of the inner mitochondrial membrane should be 1.3·108 times higher than in the extracellular space. This explains the very high efficiency of such compounds in experiments on cell cultures. It is concluded that SkQs are rechargeable, mitochondria-targeted antioxidants of very high efficiency and specificity. Therefore, they might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δψ:

transmembrane electric potential difference

AAPH:

2,2′-azobis(2-amidinopropane) dihydrochloride

BLM:

bilayer planar phospholipid membrane

BSA:

bovine serum albumin

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

CM-DCF-DA:

5-(-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate

C12TPP:

dodecyltriphenylphosphonium

DMQ:

demethoxy-derivative of CoQ0 lacking one of the methoxy groups

DPQ:

decylplastoquinone

FCCP:

carbonyl cyanide p-trifluo-romethoxyphenylhydrazone

MDA:

malondialdehyde

MitoQ:

10-(6′-ubiquinonyl) decyltriphenylphosphonium

NAC:

N-acetyl cysteine

PQ:

plastoquinone

ROS:

reactive oxygen species

SF6846:

3,5-di(tert)butyl-4-hydroxybenzylidene malononitrile

SkQ:

cationic derivative of plastoquinone or methyl plastoquinone

SkQ1:

10-(6′-plastoquinonyl) decyltriphenylphosphonium

SkQ2:

10-(6′-plastoquinonyl) decylcarnitine

SkQ2M:

10-(6t′-plastoquinonyl) decylmethylcarnitine

SkQ3:

10-(6′-methylplasto-quinonyl) decyltriphenylphosphonium

SkQ4:

10-(6′-plastoquinonyl) decyltributylammonium

SkQ5:

5-(6′-plastoquinonyl) amyltriphenylphosphonium

SkQR1:

10-(6′-plastoquinonyl) decylrhodamine 19

TMRE:

tetramethylrhodamine ethyl ester

TPB:

tetraphenylborate

TPP:

tetraphenylphosphonium

References

  1. Skulachev, V. P. (2005) IUBMB-Life, 57, 305–310.

    Article  CAS  PubMed  Google Scholar 

  2. Liberman, E. A., Topali, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  3. Grinius, L. L., Jasaitis, A. A., Kadziauskas, Yu. L., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, L. M., and Vladimirova. M. A. (1970) Biochim. Biophys. Acta, 216, 1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Bakeeva, L. E., Grinius, L. L., Jasaitis, A. A., Kuliene, V. V., Levitsky, D. O., Liberman, E. A., Severina, I. I., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 12–21.

    Google Scholar 

  5. Isaev, I. I., Liberman, E. A., Samuilov, V. D., Skulachev, V. P., and Tsofina, L. M. (1970) Biochim. Biophys. Acta, 216, 22–29.

    Article  CAS  PubMed  Google Scholar 

  6. Liberman, E. A., and Skulachev. V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.

    Article  CAS  PubMed  Google Scholar 

  7. Skulachev, V. P. (1988) Membrane Bioenergetics, Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  8. Green, D. (1974) Biochim. Biophys. Acta, 346, 27–78.

    CAS  PubMed  Google Scholar 

  9. Severin, S. E., Skulachev, V. P., and Yaguzhinsky, L. S. (1970) Biokhimiya, 35, 1250–1257.

    CAS  Google Scholar 

  10. Levitsky, D. O., and Skulachev, V. P. (1972) Biochim. Biophys. Acta, 275, 33–50.

    Article  CAS  PubMed  Google Scholar 

  11. Burns, R. J., Smith, R. A. J., and Murphy, M. P. (1995) Arch. Biochem. Biophys., 322, 60–68.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Eur. J. Biochem., 263, 709–716.

    Article  CAS  PubMed  Google Scholar 

  13. Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.

    Article  CAS  PubMed  Google Scholar 

  14. James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.

    Article  CAS  PubMed  Google Scholar 

  15. Kelso, G. F., Porteous, C. M., Hughes, G., Ledgerwood, E. C., Gane, A. M., Smith, R. A., and Murphy, M. P. (2002) Ann. NY Acad. Sci., 959, 263–274.

    Article  CAS  PubMed  Google Scholar 

  16. Saretzki, G., Murphy, M. P., and von Zglinicki, T. (2003) Aging Cell, 2, 141–143.

    Article  CAS  PubMed  Google Scholar 

  17. Jauslin, M. L., Meier, T., Smith, R. A., and Murphy, M. P. (2003) FASEB J., 17, 1972–1974.

    CAS  PubMed  Google Scholar 

  18. Murphy, M. P., and Smith, R. A. (2007) Annu. Rev. Pharmacol. Toxicol., 47, 629–656.

    Article  CAS  PubMed  Google Scholar 

  19. O’Malley, Y., Fink, B. D., Ross, N. C., Prisinzano, T. E., and Sivitz, W. I. (2006) J. Biol. Chem., 281, 39766–39775.

    Article  PubMed  CAS  Google Scholar 

  20. Doughan, A. K., and Dikalov, S. I. (2007) Antioxid. Redox Signal, 9, 1825–1836.

    Article  CAS  PubMed  Google Scholar 

  21. Vlachantoni, D., Tulloch, B., Taylor, R. W., Turnbull, D. M., Murphy, M. O., and Wright, A. F. (2006) Invest. Ophthalmol. Vis. Sci., E-5773.

  22. Tauskela, J. S. (2007) IDrugs, 10, 399–412.

    CAS  PubMed  Google Scholar 

  23. Kruk, J., Jemiola-Rzeminska, M., and Strzalka, K. (1997) Chem. Phys. Lipids, 87, 73–80.

    Article  CAS  Google Scholar 

  24. Loshadkin, D., Roginsky, V., and Pliss, E. (2002) Int. J. Chem. Kinetics, 34, 162–171.

    Article  CAS  Google Scholar 

  25. Roginsky, V., Barsukova, T., Loshadkin, D., and Pliss, E. (2003) Chem. Phys. Lipids, 125, 49–58.

    Article  CAS  PubMed  Google Scholar 

  26. Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.

    Article  CAS  Google Scholar 

  27. Severina, I. I. (1982) Biochim. Biophys. Acta, 681, 311–317.

    Article  CAS  Google Scholar 

  28. Palmer, J. W., Tandler, B., and Hoppel, C. L. (1977) J. Biol. Chem., 252, 8731–8739.

    CAS  PubMed  Google Scholar 

  29. Grieff, D., and Meyer, S. (1961) Biochim. Biophys. Acta, 50, 232–242.

    Google Scholar 

  30. Yagi, K., Nishigaki, I., and Ohama, H. (1968) Vitamins, 37, 105–112.

    CAS  Google Scholar 

  31. Jentzsch, A. M., Bachmann, H., Furst, P., and Biesalski, H. K. (1996) Free Rad. Biol. Med., 20, 251–256.

    Article  CAS  PubMed  Google Scholar 

  32. Akerman, K. E. O., and Wikstrom, M. K. F. (1976) FEBS Lett., 68, 191–197.

    Article  CAS  PubMed  Google Scholar 

  33. Shchepina, L. A., Pletjushkina, O. Yu., Avetisyan, A. V., Bakeeva, L. E., Fetisova, E. K., Izyumov, D. S., Saprunova, V. B., Vyssokikh, M. Yu., Chernyak, B. V., and Skulachev, V. P. (2002) Oncogene, 21, 8149–8157.

    Article  CAS  PubMed  Google Scholar 

  34. Lissi, E., Pascual, C., and del Castillo, M. D. (1992) Free Rad. Res. Commun., 17, 299–311.

    Article  CAS  Google Scholar 

  35. Krasowska, A., Rosiak, D., Szkapiak, K., and Lukaszewicz, M. (2000) Curr. Top. Biophys., 24, 89–95.

    CAS  Google Scholar 

  36. Naguib, Y. M. (1998) Analyt. Biochem., 265, 290–298.

    Article  CAS  PubMed  Google Scholar 

  37. Drummen, G. P., van Liebergen, L. C., Op den Kamp, J. A., and Post, J. A. (2002) Free Rad. Biol. Med., 33, 473–490.

    Article  CAS  PubMed  Google Scholar 

  38. Sobko, A. A., Vigasina, M. A., Rokitskaya, T. I., Kotova, E. A., Zakharov, S. D., Cramer, W. A., and Antonenko, Y. M. (2004) J. Membr. Biol., 199, 51–62.

    Article  CAS  PubMed  Google Scholar 

  39. Von Jagow, G., and Bohrer, C. (1975) Biochim. Biophys. Acta, 387, 409–424.

    Article  Google Scholar 

  40. Weiss, H., and Wingfield, P. (1979) Eur. J. Biochem., 99, 151–160.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, M., Liu, B.-L., Gu, L.-Q., and Zhu, Q.-S. (1986) Biochim. Biophys. Acta, 851, 469–474.

    Article  CAS  PubMed  Google Scholar 

  42. Gu, L.-Q., Yu, L., and Yu, C.-A. (1990) Biochim. Biophys. Acta, 1015, 482–492.

    Article  CAS  PubMed  Google Scholar 

  43. Gohil, V. M., Gvozdenovic-Jeremic, J., Schlame, M., and Greenberg, M. L. (2005) Analyt. Biochem., 343, 350–352.

    Article  CAS  PubMed  Google Scholar 

  44. Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W., and Skulachev, V. P. (2006) Biochim. Biophys. Acta, 1757, 525–534.

    Article  CAS  PubMed  Google Scholar 

  45. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) J. Exp. Med., 192, 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  46. Schulz, J. B., Lindenau, J., Seyfried, J., and Dichgans, J. (2000) Eur. J. Biochem., 267, 4904–4911.

    Article  CAS  PubMed  Google Scholar 

  47. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Yu., Saprunova, V. B., Skulachev, I. B., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Mol. Cell. Biochem., 256/257, 341–358.

    Article  PubMed  Google Scholar 

  48. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Yu. S., Skulachev, V. P., and Zorov, D. B. (1988) J. Cell Biol., 107, 481–495.

    Article  CAS  PubMed  Google Scholar 

  49. Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., and Monks, T. J. (2000) Chem. Res. Toxicol., 13, 135–160.

    Article  CAS  PubMed  Google Scholar 

  50. Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008) J. Membr. Biol., 222, 141–149.

    Article  CAS  PubMed  Google Scholar 

  51. Tyurin, V. A., Tyurina, Y. Y., Osipov, A. N., Belikova, N. A., Basova, L. V., Kapralov, A. A., Bayir, H., and Kagan, V. E. (2007) Cell Death Differ., 14, 872–875.

    Article  CAS  PubMed  Google Scholar 

  52. Basova, L. V., Kurnikov, I. V., Wang, L., Ritov, V. B., Belikova, N. A., Vlasova, I. I., Pacheco, A. A., Winnica, D. E., Peterson, J., Bayir, H., Waldeck, D. H., and Kagan, V. E. (2007) Biochemistry, 46, 3423–3434.

    Article  CAS  PubMed  Google Scholar 

  53. Choi, S. Y., Gonzalvez, F., Jenkins, G. M., Slomianny, C., Chretien, D., Arnoult, D., Petit, P. X., and Frohman, M. A. (2007) Cell Death Differ., 14, 597–606.

    Article  CAS  PubMed  Google Scholar 

  54. Lee, S., Jeong, S. Y., Lim, W. C., Kim, S., Park, Y. Y., Sun, X., Youle, R. J., and Cho, H. (2007) J. Biol. Chem., 282, 22977–22983.

    Article  CAS  PubMed  Google Scholar 

  55. Chen, H., McCaffery, J. M., and Chan, D. C. (2007) Cell, 130, 548–562.

    Article  CAS  PubMed  Google Scholar 

  56. Scheckhuber, C. Q., Erjavec, N., Tinazli, A., Hamann, A., Nystrom, T., and Osiewacz, H. D. (2007) Nat. Cell Biol., 9, 99–105.

    Article  CAS  PubMed  Google Scholar 

  57. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. V., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasil’eva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.

    Article  CAS  Google Scholar 

  58. Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Yu., Fetisova, E. K., Ivanova, O. Yu., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashov, A. L., Pletjushkina, O. Yu., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1300–1316.

    Article  CAS  Google Scholar 

  59. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Zh., Grigorian, E. N., Grishanova, A. Yu., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Yu. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. B., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.

    Article  CAS  Google Scholar 

  60. Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Samoylova, T. A., Saprunova, V. B., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.

    Article  CAS  Google Scholar 

References

  1. Severina, I. I., and Skulachev, V. P. (1984) FEBS Lett., 165, 67–71.

    Article  CAS  Google Scholar 

  2. Liu, X., Jiangs, N., Hughes, B., Bigras, E., Shoubrudge, E., and Hekimi, S. (2005) Genes Dev., 19, 2424–2434.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold, R. T., and Zaugg, H. E. (1941) J. Am. Chem. Soc., 63, 1317–1320.

    Article  CAS  Google Scholar 

  4. Gu, L. Q., and Yu, C. A. (1983) Biochem. Biophys. Res. Commun., 113, 477–482.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobsen, N., and Torsell, K. (1973) Acta Chem. Scand., 27, 3211–3216.

    Article  CAS  Google Scholar 

  6. Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwoodj, E. C., Smith, R. A. J., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.

    Article  CAS  PubMed  Google Scholar 

  7. Hockings, P. D., and Rogers, P. J. (1996) Biochim. Biophys. Acta, 1282, 101–106.

    Article  PubMed  Google Scholar 

  8. Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M. R., del Sal, G., Pelicci, P., and Rizzuto, R. (2007) Science, 315, 659–663.

    Article  CAS  PubMed  Google Scholar 

  9. Markova, O. V., Evstafieva, A. G., Mansurova, S. E., Moussine, S. S., Palamarchuk, L. A., Pereverzev, M. O., Vartapetian, A. B., and Skulachev, V. P. (2003) Biochim. Biophys. Acta, 1557, 109–117.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Skulachev.

Additional information

Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1589–1606.

This and the following four articles were written by the request of the Editorial Board of Biochemistry (Moscow).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonenko, Y.N., Avetisyan, A.V., Bakeeva, L.E. et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies. Biochemistry Moscow 73, 1273–1287 (2008). https://doi.org/10.1134/S0006297908120018

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908120018

Key words

Navigation