Planta Med 2007; 73(7): 644-649
DOI: 10.1055/s-2007-981534
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Antianaphylactic Properties of 7-Epiclusianone, a Tetraprenylated Benzophenone Isolated from Garcinia brasiliensis

Josiane Sabbadini Neves1 , Luciana Pontes Coelho1 , Renato Sérgio Balão Cordeiro1 , Marcia Paranho Veloso2 , Patricia Machado Rodrigues e Silva1 , Marcelo Henrique dos Santos2 , Marco Aurélio Martins1
  • 1Laboratory of Inflammation, Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil.
  • 2Laboratory of Phytochemistry and Medicinal Chemistry, Department of Pharmacy, Alfenas Federal University (UNIFAL-MG), Alfenas, Minas Gerais, MG, Brazil.
Further Information

Publication History

Received: February 14, 2007 Revised: April 26, 2007

Accepted: April 27, 2007

Publication Date:
11 June 2007 (online)

Abstract

Prior studies have emphasized the anti-inflammatory and antioxidant properties of polyisoprenylated benzophenone derivatives, but their putative effect on allergic conditions has not yet been addressed. In the current study, the naturally occurring 7-epiclusianone, isolated from Garcinia brasiliensis, was investigated to check its effectiveness on allergen-evoked intestinal spasm. The standard antiallergic azelastine was used for comparison. We found that 7-epiclusianone and azelastine inhibited antigen-induced contractions of guinea pig ileum with similar IC50 values (2.3 ± 1.1 μM and 3.3 ± 1.2 μM, respectively). A similar blockade of anaphylactic histamine release from the ileum was also noted. In contrast, azelastine was more potent than 7-epiclusianone to prevent spasms induced by histamine (IC50 = 6.3 ± 0.2 nM and 3.7 ± 0.1 μM, respectively). These findings reveal that 7-epiclusianone is clearly active against the anaphylactic response and should be considered as a molecular template in drug discovery for allergic syndromes.

  • 1 Ampofo S A, Waterman P G. Xanthones and neoflavonoids from two Asian species of Calophyllum .  Phytochemistry. 1986;  25 2617-20.
  • 2 Bennett G J, Lee H H. Xanthones from Guttiferae .  Phytochemistry. 1988;  28 967-98.
  • 3 Gopalakrishnan G, Banumathi B, Suresh G. Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives.  J Nat Prod. 1997;  60 519-24.
  • 4 Diaz-Carballo D, Seeber S, Strumberg D, Hilger R A. Novel antitumoral compound isolated from Clusia rosea .  Int J Clin Pharmacol Ther. 2003;  41 622-3.
  • 5 Hay A EA, Mallet M C, Dumontet S, Litaudon V, Rondeau M, Richomme D P. Antioxidant xanthones from Garcinia vieillardii .  J Nat Prod. 2004;  67 707-9.
  • 6 Santos M H, Speziali N L, Nagem T, Oliveira T T. Epiclusianone: a new natural product derivative of bicyclo[3.3.1]nonane-2,4,9-trione.  Acta Crystallogr. 1998;  C54 1990-2.
  • 7 Santos M H. Estudo químico dos frutos de Rheedia gardneriana e aplicações biológicas dos seus constituintes [dissertation]. Viçosa; UFV 1996.
  • 8 Alves T M, Alves R, Romanha A J, Zani C L, dos Santos M H, Nagem T J. Biological activities of 7-epiclusianone.  J Nat Prod. 1999;  62 369-71.
  • 9 Cruz A J, Lemos V S, dos Santos M H, Nagem T J, Cortes S F. Vascular effects of 7-epiclusianone, a prenylated benzophenone from Rheedia gardneriana, on the rat aorta.  Phytomedicine. 2006;  13 442-5.
  • 10 Corrêa M P. Dicionário das plantas úteis do Brasil e das exóticas cultivadas, Vol. 1. Rio de Janeiro; Imprensa Nacional 1926.
  • 11 Delle Monache G, Botta B. Chemical investigation of the genus Rheedia, IV. Three new xanthones from Rheedia brasiliensis .  J Nat Prod. 1984;  47 620-5.
  • 12 Chand N, Diamantis W, Sofia R D. Antagonism of histamine and leukotrienes by azelastine in isolated guinea pig ileum.  Agents Actions. 1986;  19 164-8.
  • 13 Foster R W, Okpalugo B I, Small R C. Antagonism of Ca2+ and other actions of verapamil in guinea-pig isolated trachealis.  Br J Pharmacol. 1984;  81 499-507.
  • 14 Shore P A, Burkhalter A, Cohn VH J r. A method for the fluorometric assay of histamine in tissues.  J Pharmacol Exp Ther. 1959;  127 182-6.
  • 15 Balasubramanyam K, Altaf M, Varier R A, Swaminathan V, Ravindran A, Sadhale P P. et al . Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression.  J Biol Chem. 2004;  279 33 716-26.
  • 16 Liao C H, Lin J K. Effects of garcinol on free radical generation and NO production in embryonic rat cortical neurons and astrocytes.  Biochem Biophys Res Commun. 2005;  329 1306-14.
  • 17 Hong J, Sang S, Park H J, Kwon S J, Suh N, Huang M T. et al . Modulation of arachidonic acid metabolism and nitric oxide synthesis by garcinol and its derivatives.  Carcinogenesis. 2006;  27 278-86.
  • 18 Berger W, Hampel F J r, Bernstein J, Shah S, Sacks H, Meltzer E O. Impact of azelastine nasal spray on symptoms and quality of life compared with cetirizine oral tablets in patients with seasonal allergic rhinitis.  Ann Allergy Asthma Immunol. 2006;  97 375-81.
  • 19 McTavish D, Sorkin E M. Azelastine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential.  Drugs. 1989;  38 778-800.
  • 20 Kakutani C, Ogino S, Ikeda H, Enomoto T. [Comparison of clinical efficacy and cost-quality of antihistamines in early treatment for Japanese cedar pollinosis].  Arerugi. 2006;  55 554-65.
  • 21 Horak F, Zieglmayer U P, Zieglmayer R, Kavina A, Marschall K, Munzel U. et al . Azelastine nasal spray and desloratadine tablets in pollen-induced seasonal allergic rhinitis: a pharmacodynamic study of onset of action and efficacy.  Curr Med Res Opin. 2006;  22 151-7.
  • 22 Lieberman P L, Settipane R A. Azelastine nasal spray: a review of pharmacology and clinical efficacy in allergic and nonallergic rhinitis.  Allergy Asthma Proc. 2003;  24 95-105.
  • 23 Nakamura T, Nishizawa Y, Sato T, Yamato C. Effect of azelastine on the intracellular Ca2+ mobilization in guinea pig peritoneal macrophages.  Eur J Pharmacol. 1988;  148 35-41.
  • 24 Hazama H, Nakajima T, Hisada T, Hamada E, Omata M, Kurachi Y. Effects of azelastine on membrane currents in tracheal smooth muscle cells isolated from the guinea-pig.  Eur J Pharmacol. 1994;  259 143-50.
  • 25 Bolsmann K, Braam U, Eichelberg D, Greven T, Jungbluth C, Schmutzler W. et al . Histamine release from mast cells and monocytes: the effects of azelastine, reproterol and vitamin A-analogues.  Inflamm Res. 1996;  45 S5-6.
  • 26 Katayama I, Otoyama K, Yokozeki H, Nishioka K. Effect of mast cell modulators on IgE-mediated murine biphasic cutaneous reactions.  Int Arch Allergy Immunol. 1996;  109 390-7.
  • 27 Manabe H, Ohmori K, Tomioka H, Yoshida S. Oxatomide inhibits the release of chemical mediators from human lung tissues and from granulocytes.  Int Arch Allergy Appl Immunol. 1988;  87 91-7.
  • 28 Shichijo M, Inagaki N, Nakai N, Kimata M, Nakahata T, Serizawa I. et al . The effects of anti-asthma drugs on mediator release from cultured human mast cells.  Clin Exp Allergy. 1998;  28 1228-36.

Prof. Dr. Marco Aurélio Martins

Laboratory of Inflammation

Oswaldo Cruz Institute

Oswaldo Cruz Foundation (FIOCRUZ)

Av. Brasil 4365

Manguinhos CEP

21045-900 Rio de Janeiro

RJ

Brazil

Phone: +55-21-2573-0844

Fax: +55-21-2558-7382

Email: mmartins@ioc.fiocruz.br

    >