Semin Neurol 2005; 25(4): 445-452
DOI: 10.1055/s-2005-923538
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Treatment and Prevention of Primary Intracerebral Hemorrhage

Amytis Towfighi1 , Steven M. Greenberg1 , Jonathan Rosand1
  • 1Vascular and Critical Care Neurology, Massachusetts General Hospital, Boston, Massachusetts
Further Information

Publication History

Publication Date:
08 December 2005 (online)

ABSTRACT

Intracerebral hemorrhage (ICH), which constitutes 10 to 15% of all strokes and affects ~65,000 people each year in the United States, has the highest mortality rate of all stroke subtypes. Hypertension, cerebral amyloid angiopathy, and anticoagulation underlie the majority of cases of ICH. Warfarin not only increases the risk but also increases the severity of ICH by causing hematoma expansion. With the advent of gradient-echo magnetic resonance imaging, patients with underlying cerebral amyloid angiopathy or hypertensive vasculopathy can be identified, and measures can be taken to prevent ICH. Initiating an antihypertensive regimen in a patient with nonlobar microbleeds suggestive of hypertensive vasculopathy, and withholding warfarin in patients with lobar microbleeds suggestive of cerebral amyloid angiopathy, are emerging prevention strategies. Although a treatment for cerebral amyloid angiopathy does not exist, agents targeting β-amyloid metabolism and bioactivity are promising candidates. Strategies for preventing warfarin-associated hemorrhage include strict monitoring of anticoagulation levels and using agents such as direct thrombin inhibitors. The future of ICH management lies in therapies targeted at the pathophysiological steps in ICH. Potential treatments include glutamate receptor antagonists for preventing glutamate excitotoxicity, matrix metalloproteinase and thrombin inhibitors for preventing perihematomal edema, and recombinant activated factor VII for preventing hematomal expansion.

REFERENCES

  • 1 Sacco R L, Mayer S A. Epidemiology of intracerebral hemorrhage. In: Feldmann E Intracerebral Hemorrhage. Armonk, NY; Futura 1994: 3-26
  • 2 Albers G W, Amarenco P, Easton J D, Sacco R L, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke: the seventh ACCPP conference on antithrombotic and thrombolytic therapy.  Chest. 2004;  126 483S-512S
  • 3 Broderick J P, Brott T, Tomsick T, Huster G, Miller R. The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites.  N Engl J Med. 1992;  326 733-736
  • 4 Counsell C, Boonyakarnkul S, Dennis M et al.. Primary intracerebral haemorrhage in the Oxfordshire community stroke project. 2: prognosis.  Cerebrovasc Dis. 1995;  5 26-34
  • 5 Woo D, Sauerbeck L R, Kissela B M et al.. Genetic and environmental risk factors for intracerebral hemorrhage: preliminary results of a population-based study.  Stroke. 2002;  33 1190-1196 discussion 1190-1196
  • 6 Anderson C, Chakera T, Stewart-Wynne E, Jamrozik K. Spectrum of primary intracerebral hemorrhage in Perth, Western Australia, 1989-1990: incidence and outcome.  J Neurol Neurosurg Psychiatry. 1994;  57 936-940
  • 7 Itoh Y, Yamada M, Hayakawa M, Otomo E, Miyatake T. Cerebral amyloid angiopathy: a significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly.  J Neurol Sci. 1993;  116 135-141
  • 8 Knudsen K A, Rosand J, Karluk D, Greenberg S M. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria.  Neurology. 2001;  56 537-539
  • 9 Vinters H V. Cerebral amyloid angiopathy: a critical review.  Stroke. 1987;  18 311-324
  • 10 Fisher C. Pathological observations in hypertensive cerebral hemorrhage.  J Neuropathol Exp Neurol. 1971;  30 536-550
  • 11 Alberts M J, McCarron M O, Hoffmann K L, Graffagnino C. Familial clustering of intracerebral hemorrhage: a prospective study in North Carolina.  Neuroepidemiology. 2002;  21 18-21
  • 12 Roob G, Fazekas F. Magnetic resonance imaging of cerebral microbleeds.  Curr Opin Neurol. 2000;  13 69-73
  • 13 Tanaka A, Ueno Y, Nakayama Y, Takano K, Takebayashi S. Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas.  Stroke. 1999;  30 1637-1642
  • 14 Atlas S W, Mark A S, Grossman R I, Gomori J M. Intracranial hemorrhage-gradient-echo MR imaging at 1.5 T: comparison with spin-echo imaging and clinical applications.  Radiology. 1988;  168 803-807
  • 15 Fazekas F, Kleinert R, Roob G et al.. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds.  AJNR Am J Neuroradiol. 1999;  20 637-642
  • 16 Rosand J. Hypertension and the brain: stroke is just the tip of the iceberg.  Neurology. 2004;  63 6-7
  • 17 Lee S H, Park J M, Kwon S J et al.. Left ventricular hypertrophy is associated with cerebral microbleeds in hypertensive patients.  Neurology. 2004;  63 16-21
  • 18 Greenberg S M, Eng J A, Ning M, Smith E E, Rosand J. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage.  Stroke. 2004;  35 1415-1420
  • 19 Arakawa S, Saku Y, Ibayashi S, Nagao T, Fujishima M. Blood pressure control and recurrence of hypertensive brain hemorrhage.  Stroke. 1998;  29 1806-1809
  • 20 Group SCR .Prevention of various stroke types by treatment of isolated systolic hypertension. International Stroke Society's Second World Congress of Stroke 1992
  • 21 PROGRESS Collaborative Group . Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack.  Lancet. 2001;  358 1033-1041
  • 22 Vonsattel J P, Myers R H, Hedley-Whyte E T, Ropper A H, Bird E D, Richardson E P. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study.  Ann Neurol. 1991;  30 637-649
  • 23 Mandybur T I. Cerebral amyloid angiopathy: the vascular pathology and complications.  J Neuropathol Exp Neurol. 1986;  45 79-90
  • 24 Yamada M, Itoh Y, Shintaku M et al.. Immune reactions associated with cerebral amyloid angiopathy.  Stroke. 1996;  27 1155-1162
  • 25 Maat-Schieman M L, van Duinen S G, Rozemuller A J, Haan J, Roos R A. Association of vascular amyloid beta and cells of the mononuclear phagocyte system in hereditary cerebral hemorrhage with amyloidosis (Dutch) and Alzheimer disease.  J Neuropathol Exp Neurol. 1997;  56 273-284
  • 26 Uchihara T, Akiyama H, Kondo H, Ikeda K. Activated microglial cells are colocalized with perivascular deposits of amyloid-beta protein in Alzheimer's disease brain.  Stroke. 1997;  28 1948-1950
  • 27 Vinters H V, Natte R, Maat-Schieman M L et al.. Secondary microvascular degeneration in amyloid angiopathy of patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D).  Acta Neuropathol (Berl). 1998;  95 235-244
  • 28 Palsdottir A, Abrahamson M, Thorsteinsson L et al.. Mutation in cystatin C gene causes hereditary brain haemorrhage.  Lancet. 1988;  2 603-604
  • 29 Levy E, Lopez-Otin C, Ghiso J, Geltner D, Frangione B. Stroke in Icelandic patients with hereditary amyloid angiopathy is related to a mutation in the cystatin C gene, an inhibitor of cysteine proteases.  J Exp Med. 1989;  169 1771-1778
  • 30 Greenberg S M, Briggs M E, Hyman B T et al.. Apolipoprotein E epsilon 4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy.  Stroke. 1996;  27 1333-1337
  • 31 Nicoll J A, Burnett C, Love S et al.. High frequency of apolipoprotein E epsilon 2 allele in hemorrhage due to cerebral amyloid angiopathy.  Ann Neurol. 1997;  41 716-721
  • 32 Greenberg S M, Vonsattel J P, Segal A Z et al.. Association of apolipoprotein E epsilon 2 and vasculopathy in cerebral amyloid angiopathy.  Neurology. 1998;  50 961-965
  • 33 Schmechel D E, Saunders A M, Strittmatter W J et al.. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.  Proc Natl Acad Sci USA. 1993;  90 9649-9653
  • 34 Greenberg S M, Rebeck G W, Vonsattel J P, Gomez-Isla T, Hyman B T. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy.  Ann Neurol. 1995;  38 254-259
  • 35 Premkumar D R, Cohen D L, Hedera P, Friedland R P, Kalaria R N. Apolipoprotein E-epsilon 4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer's disease.  Am J Pathol. 1996;  148 2083-2095
  • 36 Olichney J M, Hansen L A, Galasko D et al.. The apolipoprotein E epsilon 4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer's disease and Lewy body variant.  Neurology. 1996;  47 190-196
  • 37 McCarron M O, Nicoll J A, Stewart J et al.. The apolipoprotein E epsilon 2 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage.  J Neuropathol Exp Neurol. 1999;  58 711-718
  • 38 Greenberg S M, Vonsattel J P. Diagnosis of cerebral amyloid angiopathy: sensitivity and specificity of cortical biopsy [see comments].  Stroke. 1997;  28 1418-1422
  • 39 Olichney J M, Hansen L A, Hofstetter C R, Grundman M, Katzman R, Thal L J. Cerebral infarction in Alzheimer's disease is associated with severe amyloid angiopathy and hypertension.  Arch Neurol. 1995;  52 702-708
  • 40 Okazaki H, Reagan T J, Campbell R J. Clinicopathologic studies of primary cerebral amyloid angiopathy.  Mayo Clin Proc. 1979;  54 22-31
  • 41 Greenberg S M, Vonsattel J P, Stakes J W, Gruber M, Finklestein S P. The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage.  Neurology. 1993;  43 2073-2079
  • 42 Hendricks H T, Franke C L, Theunissen P H. Cerebral amyloid angiopathy: diagnosis by MRI and brain biopsy.  Neurology. 1990;  40 1308-1310
  • 43 Yoshimura M, Yamanouchi H, Kuzuhara S et al.. Dementia in cerebral amyloid angiopathy: a clinicopathological study.  J Neurol. 1992;  239 441-450
  • 44 Silbert P L, Bartleson J D, Miller G M, Parisi J E, Goldman M S, Meyer F B. Cortical petechial hemorrhage, leukoencephalopathy, and subacute dementia associated with seizures due to cerebral amyloid angiopathy.  Mayo Clin Proc. 1995;  70 477-480
  • 45 Gray F, Vinters H V, Le Noan H, Salama J, Delaporte P, Poirier J. Cerebral amyloid angiopathy and granulomatous angiitis: immunohistochemical study using antibodies to the Alzheimer a4 peptide.  Hum Pathol. 1990;  21 1290-1293
  • 46 Mandybur T I, Balko G. Cerebral amyloid angiopathy with granulomatous angiitis ameliorated by steroid-cytoxan treatment.  Clin Neuropharmacol. 1992;  15 241-247
  • 47 Fountain N B, Eberhard D A. Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy: report of two cases and review of the literature.  Neurology. 1996;  46 190-197
  • 48 Spaar F, Goebel H, Volles E, Wickboldt J. Tumor-like amyloid formation (amyloidoma) in the brain.  J Neurol. 1981;  224 171-182
  • 49 Osumi A K, Tien R D, Felsberg G J, Rosenbloom M. Cerebral amyloid angiopathy presenting as a brain mass.  AJNR Am J Neuroradiol. 1995;  16 911-915
  • 50 Smith E E, Gurol M E, Eng J A et al.. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage.  Neurology. 2004;  63 1606-1612
  • 51 Hart R G, Boop B S, Anderson D C. Oral anticoagulants and intracranial hemorrhage: facts and hypotheses.  Stroke. 1995;  26 1471-1477
  • 52 Radberg J A, Olsson J E, Radberg C T. Prognostic parameters in spontaneous intracerebral hematomas with special reference to anticoagulant treatment.  Stroke. 1991;  22 571-576
  • 53 Rosand J, Eckman M H, Knudsen K A, Singer D E, Greenberg S M. The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage.  Arch Intern Med. 2004;  164 880-884
  • 54 Albers G W. Atrial fibrillation and stroke: three new studies, three remaining questions.  Arch Intern Med. 1994;  154 1443-1448
  • 55 Flibotte J J, Hagan N, O'Donnell J, Greenberg S M, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage.  Neurology. 2004;  63 1059-1064
  • 56 Hylek E M, Singer D E. Risk factors for intracranial hemorrhage in outpatients taking warfarin.  Ann Intern Med. 1994;  120 897-902
  • 57 Investigators SPiAF . Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: stroke prevention in atrial fibrillation II study [see comments].  Lancet. 1994;  343 687-691
  • 58 A randomized trial of anticoagulants versus aspirin after cerebral ischemia of presumed arterial origin. The Stroke Prevention in Reversible Ischemia Trial (SPIRIT) Study Group.  Ann Neurol. 1997;  42 857-865
  • 59 Smith E E, Rosand J, Knudsen K A, Hylek E M, Greenberg S M. Leukoaraiosis is associated with warfarin-related hemorrhage following ischemic stroke.  Neurology. 2002;  59 193-197
  • 60 Rosand J, Hylek E M, O'Donnell H C, Greenberg S M. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study.  Neurology. 2000;  55 947-951
  • 61 Lee K R, Colon G P, Betz A L, Keep R F, Kim S, Hoff J T. Edema from intracerebral hemorrhage: the role of thrombin.  J Neurosurg. 1996;  84 91-96
  • 62 Xi G, Wagner K R, Keep R F et al.. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage [see comments].  Stroke. 1998;  29 2580-2586
  • 63 Ardizzone T D, Lu A, Wagner K R, Tang Y, Ran R, Sharp F R. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat.  Stroke. 2004;  35 2587-2591
  • 64 Chen C J. Gliotoxic action of glutamate on cultured astrocytes.  J Neurochem. 2000;  75 1557-1565
  • 65 Gong C, Hoff J T, Keep R F. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat.  Brain Res. 2000;  871 57-65
  • 66 Broderick J P, Brott T G, Duldner J E, Tomsick T, Huster G. Volume of intracerebral hemorrhage: a powerful and easy-to-use predictor of 30-day mortality.  Stroke. 1993;  24 987-993
  • 67 Hemphill III J C, Bonovich D C, Besmertis L, Manley G T, Johnston S C. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage.  Stroke. 2001;  32 891-897
  • 68 Brott T, Broderick J, Kothari R et al.. Early hemorrhage growth in patients with intracerebral hemorrhage.  Stroke. 1997;  28 1-5
  • 69 Kazui S, Naritomi H, Yamamoto H, Sawada T, Yamaguchi T. Enlargement of spontaneous intracerebral hemorrhage: incidence and time course.  Stroke. 1996;  27 1783-1787
  • 70 Mayer S A, Lignelli A, Fink M E et al.. Perilesional blood flow and edema formation in acute intracerebral hemorrhage.  Stroke. 1998;  29 1791-1798
  • 71 Rosenberg G A, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat.  Neurology. 1997;  48 921-926
  • 72 Mayer S A. Ultra-early hemostatic therapy for intracerebral hemorrhage.  Stroke. 2003;  34 224-229
  • 73 Mayer S. Safety and feasibility of recombinant factor VIIA for acute intracerebral hemorrhage.  Stroke. 2005;  36 74-79
  • 74 Mayer S, Brun N, Begtrup K et al.. Recombinant activated factor VII for acute intracerebral hemorrhage.  N Engl J Med. 2005;  352 777-785
  • 75 Hedner U. Clinical use of recombinant FVIIa (rFVIIa).  Transfus Sci. 1998;  19 163-176
  • 76 Monroe D M, Hoffman M, Oliver J A, Roberts H R. A possible mechanism of action of activated factor VII independent of tissue factor.  Blood Coagul Fibrinolysis. 1998;  9(suppl 1) S15-S20
  • 77 Gebel Jr J M, Jauch E C, Brott T G et al.. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage.  Stroke. 2002;  33 2631-2635
  • 78 Wagner K R, Xi G, Hua Y et al.. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter.  Stroke. 1996;  27 490-497
  • 79 Lee K R, Betz A L, Kim S, Keep R F, Hoff J T. The role of the coagulation cascade in brain edema formation after intracerebral hemorrhage.  Acta Neurochir (Wien). 1996;  138 396-400
  • 80 Lee K, Betz A, Keep R, Chenevert T, Kim S, Hoff J. Intracerebral infusion of thrombin as a cause of brain edema.  J Neurosurg. 1995;  83 1045-1050
  • 81 Song E C, Chu K, Jeong S W et al.. Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage.  Stroke. 2003;  34 2215-2220
  • 82 Kothari R U, Brott T, Broderick J P et al.. The ABCs of measuring intracerebral hemorrhage volumes.  Stroke. 1996;  27 1304-1305
  • 83 Broderick J P, Adams H P, Barsan W et al.. Guidelines for the management of spontaneous intracerebral hemorrhage.  Stroke. 1999;  30 905-915
  • 84 Passero S, Ciacci G, Ulivelli M. The influence of diabetes and hyperglycemia on clinical course after intracerebral hemorrhage.  Neurology. 2003;  61 1351-1356
  • 85 Ropper A. Management of intracranial hypertension and mass effect. In: Ropper A Neurological and Neurosurgical Intensive Care. Philadelphia; Lippincott Williams and Wilkins 2004: 26-51
  • 86 Rosand J, Eskey C, Chang Y, Gonzalez R G, Greenberg S M, Koroshetz W J. Dynamic single-section CT demonstrates reduced cerebral blood flow in acute intracerebral hemorrhage.  Cerebrovasc Dis. 2002;  14 214-220
  • 87 Kidwell C S, Saver J L, Mattiello J et al.. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage.  Neurology. 2001;  57 1611-1617
  • 88 Butcher K S, Baird T, MacGregor L, Desmond P, Tress B, Davis S. Perihematomal edema in primary intracerebral hemorrhage is plasma derived.  Stroke. 2004;  35 1879-1885
  • 89 Zazulia A R, Diringer M N, Videen T O et al.. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage.  J Cereb Blood Flow Metab. 2001;  21 804-810
  • 90 Zazulia A R, Diringer M N, Videen T O, Aiyagari V, Deibert E, Powers W J. Acute intracerebral hemorrhage does not produce peri-clot cerebral ischemia [abstract].  Neurology. 2000;  54(suppl 3) A261
  • 91 Powers W J, Zazulia A R, Videen T O et al.. Autoregulation of cerebral blood flow surrounding acute (6 to 22 hours) intracerebral hemorrhage.  Neurology. 2001;  57 18-24
  • 92 Vespa P M, O'Phelan K, Shah M et al.. Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome.  Neurology. 2003;  60 1441-1446
  • 93 Boeer A, Voth E, Henze T, Prange H W. Early heparin therapy in patients with spontaneous intracerebral haemorrhage.  J Neurol Neurosurg Psychiatry. 1991;  54 466-467
  • 94 Greenberg S, Schneider A, Pettigrew L. Phase II study of cerebral, a candidate treatment for intracerebral hemorrhage related to cerebral amyloid angiopathy.  Neurology. 2004;  62 A102
  • 95 Rosand J, Greenberg S M. Cerebral amyloid angiopathy.  Neurologist. 2000;  6 315-325
  • 96 Eckman M H, Rosand J, Knudsen K A, Singer D E, Greenberg S M. Can patients be anticoagulated after intracerebral hemorrhage? A decision analysis.  Stroke. 2003;  34 1710-1716
  • 97 O'Donnell H C, Rosand J, Knudsen K A et al.. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage [see comments].  N Engl J Med. 2000;  342 240-245
  • 98 Boos C J, More S. Anticoagulation for non-valvular atrial fibrillation: towards a new beginning with ximelagatran.  Curr Control Trials Cardiovasc Med. 2004;  5 3
  • 99 Waldo A. New possibilities in anticoagulant management of atrial fibrillation.  Rev Cardiovasc Med. 2004;  5(suppl 5) S30-S38
  • 100 The Executive Steering Committee on Behalf of the SPORTIF III Investigators . Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial.  Lancet. 2003;  362 1691-1698
  • 101 The Executive Steering Committee on Behalf of the SPORTIF V Investigators . Stroke prevention using the oral direct thrombin inhibitor ximelagatran in patients with nonvalvular atrial fibrillation (SPORTIF V) [abstract].  Circulation. 2003;  108 2723
  • 102 Hill M D, Silver F L, Austin P C, Tu J V. Rate of stroke recurrence in patients with primary intracerebral hemorrhage.  Stroke. 2000;  31 123-127

Jonathan RosandM.D. M.S. 

Neurology Clinical Trials Unit, 15 Parkman Street, ACC 836, Boston, MA 02114

    >