Pharmacopsychiatry 2004; 37: 113-119
DOI: 10.1055/s-2004-832664
General Concepts
© Georg Thieme Verlag KG Stuttgart · New York

Effect of Chronic Antidepressant Treatment on β-Receptor Coupled Signal Transduction Cascade. Which Effect Matters Most?

G. Holoubek1 , M. Nöldner2 , K. Treiber1 , W. E. Müller1
  • 1Department of Pharmacology, Biocenter, University of Frankfurt
  • 2Department of Pharmacology, Dr. W. Schwabe Arzneimittel, Karlsruhe
Further Information

Publication History

Publication Date:
16 November 2004 (online)

Background: ß-Receptor down-regulation has been described as a common biochemical effect of chronic treatment with many but not all antidepressant drugs. ß-Receptor activation leads to elevated intracellular levels of cAMP followed by the activation of several protein kinases which in turn activate various transcription factors. One of those, CREP has received increasing interest as an relevant component within the antidepressant drug modulated signal cascade as it represents a down-stream signal not only of the ß-receptor but also of serotonin receptor activation. Chronic treatment with many antidpressant drugs has been shown to alter CREP levels in several brain regions. While ß-receptor down-regulation by chronic antidepressant treatment has been a consistent finding, alterations of CREP levels have been observed in both direction. Similary divergent findings have been reported for BDNF a major gene targeted of CREB, where most but not all findings suggest up-regulation at least at the message level following chronic antidepressant treatment. Methods: Because of these rather divergent data, we investigated the possible effects of chronic treatment (9 or 19 days) with three different antidepressant drugs (reboxetine, citalopram, imipramine) on the individual parameters of the ß-receptor coupled signal transduction cascade. All animals were also tested for possible antidepressant effects using the forced swimming test. Results: While ß-receptor density was down-regulated by reboxetine and imipramine but not citalopram, CREB protein was only mildly elevated after 9 days, and not changed or slightly reduced after 19 days. BDNF protein levels were not or only slightly enhanced, but only for the 9 days treatment. Citalopram was most active. Under the conditions chosen, all three drugs were active in the forced swimming test. Conclusion: Taken together, the findings reported make it difficult to identify one single component of the ß-receptor coupled signal transduction cascade as common final target of chronic antidepressant treatment.

Abbreviations

CERB:cAMP response element binding protein

ECT:electronconvulsive therapy

BDNF:brain derived neurotrophic factor

FST:Forced swimming test

References

  • 1 Altar C A, Whitehead R E, Chen R, Wörtwein G and Madson T. Effects of electroconvulsive seizures and antidepressant drug on brain-derived neurotrophic factor protein in rat brain.  Biol Psychiatry. 2003;  54 703-709
  • 2 Assie M B, Charveron M, Palmier C, Puozzo C, Moret C, Briley M. Effects of prolonged administration of milnacipran, a new antidepressant, on receptors and monoamine uptake in the brain of the rat.  Neuropharmacol. 1992;  31 149-155
  • 3 Basso A M, Depiante-Depaoli M, Cancela L, Molina V. Seven-day variable-stress regime alters cortical beta-adrenoceptor binding and immunologic responses: reversal by imipramine.  Pharmacol Biochem Behav. 1993;  45 665-672
  • 4 Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 5 Butterweck V, Winterhoff H, Herkenham M. St. John’s wort, hypericin and imipramine: a comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats.  Mol Psychiatry. 2001;  6 547-564
  • 6 Coppell A L, Pei Q, Zetterström T SC. Bi-shasic change in BDNF gene expression following antidepressant drug treatment.  Neuropharmacol. 2003;  44 903-910
  • 7 D’Sa C, Duman R S. Antidepressants and neuroplasticity.  Bipolar Disord. 2002;  4 183-194
  • 8 Dias B G, Banerjee S, Duman R S, Vaidya V A. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatment in the adult rat brain.  Neuropharmacol. 2003;  45 553-563
  • 9 Dostert P, Benedetti MS and Poggesi I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor.  Eur Neuropsychopharmacol. 1997;  7 (Suppl 1) 23-35
  • 10 Duman R S, Nakagawa S and Malberg J. Regulation of adult neurogenesis by antidepressant treatment.  Neuropsychopharmacol. 2001;  25 836-844
  • 11 Duman R S, Heninger G R, Nestler E J. A molecular and cellular theory of depression.  Arch Gen Psychiatry. 1997;  54 597-606
  • 12 Duncan G E, Knapp E J, Little K Y, Breese G R. Neuroanatomical specificity and dose dependence in the time course of imipramine-induced beta adrenergic receptor down-regulation in rat brain.  J Pharmacol Exp Ther. 1994;  271 1699-1704
  • 13 Frechilla D, Otano A, Del Rio J. Effect of chronic antidepressant treatment on transcription factor binding activity in rat hippocampus and frontal cortex.  Prog Neuropsychopharmacol Biol Psychiatry. 1998;  22 787-802
  • 14 Fredricson O K. Kinetics of citalopram in test animals; drug exposure in safety studies.  Prog Neuropsychopharmacol Biol Psychiatry. 1982;  6 297-309
  • 15 Garcha G, Smokcum R W, Stephenson J D, Weeramanthi T B. Effects of some atypical antidepressants on beta-adrenoceptor binding and adenylate cyclase activity in the rat forebrain.  Eur J Pharmacol. 1985;  108 1-7
  • 16 Hosoda K and Duman R S. Regulation of beta 1-adrenergic receptor mRNA and ligand binding by antidepressant treatment and norepinephrine depletion in rat frontal cortex.  J Neurochem. 1993;  60 1335-1343
  • 17 Hyttel J, Overo KF and Arnt J. Biochemical effects and drug levels in rats after long-term treatment with the specific 5-HT-uptake inhibitor, citalopram.  Psychopharmacol. 1984;  83 20-27
  • 18 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the folin phenol reagent. J Biol Chem 1951: 193 265-193 275
  • 19 Malberg J E, Eisch A J, Nestler EJ Duman R S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.  J Neurosci. 2000;  20 9104-9110
  • 20 Manier D H, Shelton RC and Sulser F. Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P ?.  J Neural Transm. 2002;  109 91-99
  • 21 Martin J V, Edwards E, Johnson J O, Henn F A. Monoamine receptors in an animal model of affective disorder.  J Neurochem. 1990;  55 1142-1148
  • 22 Morinobu S, Russel D S, Sugawara S, Takahashi M. Fujimaki K. Regulation of phospharylation of cyclic AMP response element-binding protein by paroxetine treatments.  Clin Neuropharmacol. 2000;  23 106-109
  • 23 Nibuya M, Nestler E J, Dumas R S. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.  J Neurosci. 1996;  16 2365-2372
  • 24 Odagaki Y, Garcia-Sevilla J A, Huguelet P, La Harpe R, Koyama T, Guimon J. Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims.  Brain Res. 2001;  898 224-231
  • 25 Paul I A, Duncan G E, Kuhn C, Mueller R A, Hong J S, Breese GR  (1990). Neural adaptation in imipramine-treated rats processed in forced swim test: assessment of time course, handling , rat strain and amine uptake.  J Pharmacol Exp Ther. 1990;  252 997-1005
  • 26 Porsolt R D, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatment.  Eur J Pharmacol. 1978;  47 379-391
  • 27 Porsolt R D, Bertin A, Blavet N, Deniel M, Jalfre M. Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and Serotonin activity.  Eur J Pharmacol. 1979;  57 201-210
  • 28 Radka S F, Holst P A, Fritsche M, Altar C A. Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay.  Brain Res. 1996;  709 122-130
  • 29 Riva M A, Brunello N, Rosescalli A C, Galimberti R, Carfragna N. Effect of reboxetine, a new antidepressant drug, on the central noradrenergic system: behavioural and biochemical studies.  J Drug Dev. 1989;  1 243-253
  • 30 Rossby S P, Sulser F. Antidepressants: events beyond the synapse. In: Skolnick P (ed) Antidepressants: new pharmacological strategies. The Humana Press Inc Totowa; 1997: pp 195-212
  • 31 Rossby S P, Manier D H, Liang S, Nalepa I, Sulser F. Pharmacological actions of the antidepressant venlafaxine beyond aminergic receptors.  Int J Neuropsychopharmacol. 1999;  2 1-8
  • 32 Santarelli L, Saxe M, Gross C, Surget a, Battaglia F, Dulawa S, Weisstaub N, Lee J, Fuman R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.  Science. 2003;  301 805-809
  • 33 Schwaninger M, Schofl C, Blume R, Rossig L, Knepel W. Inhibition by antidepressant drugs of cyclic AMP response element-binding protein/cyclic AMP response element-directed gene transcription.  Mol Pharmacol. 1995;  47 1112-1118
  • 34 Simbrey K, Winterhoff H, Butterweck V. Extracts of St. John’s wort and various constituents affect ß-adrenergic binding in rat frontal cortex.  Life Sci. 2004;  74 1027-1038
  • 35 Sulser F, Vetulani J and Mobley P L. Mode of action of antidepressant drugs.  Biochem Pharmacol. 1978;  27 257-261
  • 36 Thome J, Sakai N, Shin K, Steffen C, Zhang Y J, Impey S, Storm D, Duman R S. CAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment.  J Neurosci. 2000;  20 4030-4036
  • 37 Vaidya V A, Siuciak J A, Du F, Duman R S. Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures.  Neurosci. 1999;  89 157-166
  • 38 Xu H, Richardson S and Li X M. Dose-related effects of chronic antidepressants on neuroprotektive protein BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus.  Neuropsychopharmacol. 2003;  28 53-62

Prof. Dr. Walter E. Müller

Department of Pharmacology Biocenter

University of Frankfurt

60439 Frankfurt

Germany

Email: pharmacolNat@em.uni-frankfurt.de

    >