Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow

ABSTRACT

The antipsychotic drug clozapine, acts via interaction with selective neurotransmitter receptor systems. Its use however, is associated with life-threatening agranulocytosis. The mechanism by which this occurs and its possible relationship with the drug's atypicality remain unclear. As a first step in identifying mechanistic pathways involved, profiling of neurotransmitter receptors on human neutrophils, mononuclear and bone marrow stromal cells as putative targets for clozapine-mediated toxicity was undertaken. Expression of mRNA encoding dopaminergic d2, d3, d4; serotonergic 5ht2a, 5ht2c, 5ht3, 5ht6, 5ht7; adrenergic α1a, α2; histaminergic h1 and muscarinic m1, m2, m3, m4, m5 receptors was analyzed by reverse transcription-polymerase chain reaction methods. While 5ht2c, 5ht6, m1 and m2 mRNA were undetected, the presence of the other receptors indicates sites at which clozapine could bind and induce toxicity of neutrophils and stromal components which regulate granulopoiesis. The functional significance of differential receptor expression while unknown, may argue for neural regulation of hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Meltzer HY . Role of serotonin in the action of atypical antipsychotic drugs. Clin Neurosci 1995; 3: 64–75.

    CAS  Google Scholar 

  2. Ashby Jr C, Wang R . Pharmacological actions of the atypical antipsychotic drug clozapine: a review. Synapse 1996; 24: 349–394.

    Article  CAS  Google Scholar 

  3. Kinon B, Lieberman J . Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl) 1996; 124: 2–34.

    Article  CAS  Google Scholar 

  4. Safferman AZ, Lieberman JA, Kane JM, Szymanski S, Kinon B . Update on the clinical efficacy and side effects of clozapine. Schizophr Bull 1991; 17: 247–261.

    Article  CAS  Google Scholar 

  5. Young CR, Bowers Jr MB, Mazure CM . Management of the adverse effects of clozapine. Schizophr Bull 1998; 24: 381–390.

    Article  CAS  Google Scholar 

  6. Rechlin T, Claus D, Weis M . Heart rate variability in schizophrenic patients and changes of autonomic heart rate parameters during treatment with clozapine. Biol Psychiatry 1994; 35: 888–892.

    Article  CAS  Google Scholar 

  7. Hayes G, Gibler B . Clozapine-induced constipation (letter). Am J Psychiatry 1995; 152: 298.

    CAS  PubMed  Google Scholar 

  8. Umbritcht DSG, Pollack S, Kane JM . Clozapine and weight gain. J Clin Psychiatry 1994; 55: 157–160.

    Google Scholar 

  9. Copolov D, Bell W, Benson W, Keks N, Strazzeri D, Johnson G . Clozapine treatment in Australia: a review of haematological monitoring. Med J Aust 1998; 168: 495–497.

    CAS  PubMed  Google Scholar 

  10. Lieberman J, Safferman AZ . Clinical profile of clozapine: adverse reactions and agranulocytosis. Psychiatr Q 1992; 63: 51–70.

    Article  CAS  Google Scholar 

  11. Gerson SL . G-CSF and the management of clozapine-induced agranulocytosis. J Clin Psychiatry 1994; 55: 139–142.

    PubMed  Google Scholar 

  12. Pirmohamed M, Park K . Mechanism of clozapine-induced agranulocytosis: current status of research and implications for drug development. CNS Drugs 1997; 2: 139–158.

    Article  Google Scholar 

  13. Liu ZC, Uetrecht JP . Clozapine is oxidized by activated human neutrophils to a reactive nitrenium ion that irreversibly binds to the cells. J Pharmacol Exp Ther 1995; 275: 1476–1483.

    CAS  PubMed  Google Scholar 

  14. Gardner I, Leeder JS, Chin T, Zahid N, Uetrecht JP . A comparison of the covalent binding of clozapine and olanzapine to human neutrophils in vitro and in vivo. Mol Pharmacol 1998; 53: 999–1008.

    CAS  PubMed  Google Scholar 

  15. Williams DP, Pirmohamed M, Naisbitt DJ, Uetrecht JP, Park BK . Induction of metabolism-dependent and –independent neutrophil apoptosis by clozapine. Mol Pharmacol 2000; 58: 207–216.

    Article  CAS  Google Scholar 

  16. Guest I, Uetrecht J . Drugs that induce neutropenia/agranulocytosis may target specific components of the stromal cell extracellular matrix. Med Hypotheses 1999; 53: 145–151.

    Article  CAS  Google Scholar 

  17. Gerson SL, Arce C, Meltzer HY . N-desmethylclozapine: a clozapine metabolite that suppresses haemopoiesis. Br J Haematol 1994; 86: 555–561.

    Article  CAS  Google Scholar 

  18. Uetrecht JP . The role of leukocyte-generated metabolites in the pathogenesis of idiosyncratic drug reactions. Drug Metab Rev 1992; 24: 299–366.

    Article  CAS  Google Scholar 

  19. Yamazaki K, Allen T . Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the ‘neuro-reticular complex’. Am J Anat 1990; 187: 261–276.

    Article  CAS  Google Scholar 

  20. Broome C, Whetton A, Miyan J . Neuropeptide control of bone marrow neutrophil production is mediated by both direct and indirect effects on CFU-GM. Br J Haematol 2000; 108: 140–150.

    Article  CAS  Google Scholar 

  21. Amenta F, Bronzetti E, Felici L, Ricci A, Tayebati S . Dopamine D2-like receptors on human peripheral blood lymphocytes: a radioligand binding assay and immunocytochemical study. J Auton Pharmacol 1999; 19: 151–159.

    Article  CAS  Google Scholar 

  22. Ricci A, Bronzetti E, Mulatero P, Schena M, Veglio F, Amenta F . Dopamine D3 receptor in peripheral mononuclear cells of essential hypertensives. Hypertension 1997; 30: 1566–1571.

    Article  CAS  Google Scholar 

  23. Ricci A, Bronzetti E, Felici L, Greco S, Amenta F . Labeling of dopamine D3 and D4 receptor subtypes in human peripheral blood lymphocytes with [3H]7-OH-DPAT: a combined radioligand binding assay and immunochemical study. J Neuroimmunol 1998; 92: 191–195.

    Article  CAS  Google Scholar 

  24. Ricci A, Bronzetti E, Felici L, Tayebati S, Amenta F . Dopamine D4 receptor in human peripheral blood lymphocytes: a radioligand binding assay study. Neurosci Lett 1997; 229: 130–134.

    Article  CAS  Google Scholar 

  25. Ricci A, Amenta F . Dopamine D5 receptors in human peripheral blood lymphocytes: a radioligand binding study. J Neuroimmunol 1994; 53: 1–7.

    Article  CAS  Google Scholar 

  26. Bronzetti E, Adani O, Amenta F, Felici L, Mannino F, Ricci A . Muscarinic cholinergic receptor subtypes in human peripheral blood lymphocytes. Neurosci Lett 1996; 208: 211–215.

    Article  CAS  Google Scholar 

  27. Tayebati S, Codini M, Gallai V, Mannino F, Parnetti L, Ricci A et al. Radioligand binding assay of M1–M5 muscarinic cholinergic receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 1999; 99: 224–229.

    Article  CAS  Google Scholar 

  28. Ricci A, Bronzetti E, Conterno A, Greco S, Mulatero P, Schena M et al. Alpha1-adrenergic receptor subtypes in human peripheral blood lymphocytes. Hypertension 1999; 33: 708–712.

    Article  CAS  Google Scholar 

  29. Titinchi S, Clark B . Alpha 2-adrenoceptors in human lymphocytes: direct characterisation by [3H]yohimbine binding. Biochem Biophys Res Commun 1984; 121: 1–7.

    Article  CAS  Google Scholar 

  30. Goin J, Sterin-Borda L, Borda E, Finiasz M, Fernandez J, de Bracco M . Active alpha 2 and beta adrenoceptors in lymphocytes from patients with chronic lymphocytic leukemia. Int J Cancer 1991; 49: 178–181.

    Article  CAS  Google Scholar 

  31. Vile J, Strange P . D2-like dopamine receptors are not detectable on human peripheral blood lymphocytes. Biol Psychiatry 1996; 40: 881–885.

    Article  CAS  Google Scholar 

  32. Bondy B, de Jonge S, Pander S, Primbs J, Ackenheil M . Identification of dopamine D4 receptor mRNA in circulating human lymphocytes using nested polymerase chain reaction. J Neuroimmunol 1996; 71: 139–144.

    Article  CAS  Google Scholar 

  33. Bany U, Ryzewski J, Maslinski W . Relative amounts of mRNA encoding four subtypes of muscarinic receptors (m2–m5) in human peripheral blood mononuclear cells. J Neuroimmunol 1999; 97: 191–195.

    Article  CAS  Google Scholar 

  34. Ricci A, Bronzetti E, Mignini F, Tayebati S, Zaccheo D, Amenta F . Dopamine D1-like receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 1999; 96: 234–240.

    Article  CAS  Google Scholar 

  35. Guest I, Uetrecht J . Drugs that induce neutropenia/agranulocytosis may target specific components of the stromal cell extracellular matrix. Med Hypotheses 1999; 53: 145–151.

    Article  CAS  Google Scholar 

  36. Sato K, Fujii T, Watanabe Y, Yamada S, Ando T, Kazuko F et al. Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci Lett 1999; 266: 17–20.

    Article  CAS  Google Scholar 

  37. Nagai Y, Ueno S, Saeki Y, Soga F, Yanagihara T . Expression of the D3 dopamine receptor gene and a novel variant transcript generated by alternative splicing in human peripheral blood lymphocytes. Biochem Biophys Res Commun 1993; 194: 368–374.

    Article  CAS  Google Scholar 

  38. Sookhai S, Wang J, McCourt M, O'Connell D, Redmond H . Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor- independent mechanism. Surgery 1999; 126: 314–322.

    Article  CAS  Google Scholar 

  39. Sanyal S, Van Tol . Review the role of dopamine D4 receptors in schizophrenia and antipsychotic action. J Psychiatr Res 1997; 31: 219–232.

    Article  CAS  Google Scholar 

  40. Shaikh S, Collier D, Sham P, Pilowsky L, Sharma T, Lin L et al. Analysis of clozapine response and polymorphisms of the dopamine D4 receptor gene (DRD4) in schizophrenic patients. Am J Med Genet 1995; 60: 541–545.

    Article  CAS  Google Scholar 

  41. Rietschel M, Naber D, Oberlander H, Holzbach R, Fimmers R, Eggermann K et al. Efficacy and side-effects of clozapine: testing for association with allelic variation in the dopamine D4 receptor gene. Neuropsychopharmacology 1996; 15: 491–496.

    Article  CAS  Google Scholar 

  42. Egorova A, Uspenskaia I, Kruglik O, Nefedova V, Ivanov V, Nefedov V . Disorder of the serotoninergic regulation of bone marrow cell proliferation under the action of a xenobiotic inducer of oxidative stress. Eksp Klin Farmakol 1998; 61: 34–37.

    CAS  PubMed  Google Scholar 

  43. Sternberg E, Trial J, Parker C . Effect of serotonin on murine macrophages: suppression of Ia expression by serotonin and its reversal by 5-HT2 serotonergic receptor antagonists. J Immunol 1986; 137: 276–282.

    CAS  Google Scholar 

  44. Hauser S, Waldron J, Upuda K, Lipschitz D . Morphological characterization of stromal cell types in hematopoietically active long-term murine bone marrow cultures. J Histochem Cytochem 1995; 43: 371–379.

    Article  CAS  Google Scholar 

  45. Maestroni G, Conti A . Modulation of hematopoiesis via alpha 1-adrenergic receptors on bone marrow cells. Exp Hematol 1994; 22: 313–320.

    CAS  PubMed  Google Scholar 

  46. Corbel S, Schneider E, Lemoine F, Dy M . Murine hematopoietic progenitors are capable of both histamine synthesis and uptake. Blood 1995; 86: 531–539.

    CAS  PubMed  Google Scholar 

  47. Tan M, Pan Z, Wang Q, Xu Y . Effects of different subtypes of histamine receptors on proliferation and differentiation of murine colony forming unit granulocyte–macrophage and colony forming unit megakaryocyte. Chin Med J (Engl) 1998; 111: 132–135.

    CAS  Google Scholar 

  48. Jenssen H, Eckert R, Mix E, Schulz U, Schnitzler S . Histamine-receptor bearing lymphocytes. II. The use of flow cytofluorometric analysis of histamine-receptors on mouse lymphocytes of different organs. Acta Biol Med Ger 1982; 41: 625–633.

    CAS  PubMed  Google Scholar 

  49. Ching T, Koelemij J, Bast A . The effect of histamine on the oxidative burst of HL60 cells before and after exposure to reactive oxygen species. Inflamm Res 1995; 44: 99–104.

    Article  CAS  Google Scholar 

  50. Liu C, Ma X, Jiang X, Wilson SJ, Hofstra CL, Blevitt J et al. Cloning and pharmacological characterization of a fourth histamine receptor (H(4)) expressed in bone marrow. Mol Pharmacol 2001; 59: 420–426.

    Article  CAS  Google Scholar 

  51. Hellstrom-Lindahl E, Nordberg A . Muscarinic receptor subtypes in subpopulations of human blood mononuclear cells as analyzed by RT-PCR technique. J Neuroimmunol 1996; 68: 139–144.

    Article  CAS  Google Scholar 

  52. Fujino H, Kitamura Y, Yada T, Uehara T, Nomura Y . Stimulatory roles of muscarinic acetylcholine receptors on T cell antigen receptor/CD3 complex-mediated interleukin-2 production in human peripheral blood lymphocytes. Mol Pharmacol 1997; 51: 1007–1014.

    Article  CAS  Google Scholar 

  53. Kawashima K, Fujii T, Watanabe Y, Misawa H . Acetylcholine synthesis and muscarinic receptor subtype mRNA expression in T-lymphocytes. Life Sci 1998; 62: 1701–1705.

    Article  CAS  Google Scholar 

  54. Naumann R, Felber W, Heilemann H, Reuster T . Olanzapine-induced agranulocytosis (letter). Lancet 1999; 354: 566–567.

    Article  CAS  Google Scholar 

  55. Ruhe HG, Becker HE, Jessurun P, Marees CH, Heeringa M, Vermeulen HDB . Agranulocytosis and granulocytopenia associated with quetiapine. Acta Psychiatr Scand 2001; 104: 311–313.

    Article  CAS  Google Scholar 

  56. Gardner I, Zahid N, MacCrimmon D, Uetrecht JP . A comparison of the oxidation of clozapine and olanzapine to reactive metabolites and the toxicity of these metabolites to human leukocytes. Mol Pharmacol 1998; 53: 991–998.

    CAS  PubMed  Google Scholar 

  57. Gartner S, Kaplan H . Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A 1980; 77: 4756–4759.

    Article  CAS  Google Scholar 

  58. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  Google Scholar 

  59. Giros B, Sokoloff P, Martres M, Riou J, Emorine L, Schwartz J . Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 1989; 342: 923–926.

    Article  CAS  Google Scholar 

  60. Griffon N, Crocq M, Pilon C, Martres M, Mayerova A, Uyanik G et al. Dopamine D3 receptor gene: organization, transcript variants, and polymorphism associated with schizophrenia. Am J Med Genet 1996; 67: 63–70.

    Article  CAS  Google Scholar 

  61. Xie E, Zhu L, Zhao L, Chang L . The human serotonin 5-HT2C receptor: complete cDNA, genomic structure, and alternatively spliced variant. Genomics 1996; 35: 551–561.

    Article  CAS  Google Scholar 

  62. Bruss M, Gothert M, Hayer M, Bonisch H . Molecular cloning of alternatively spliced human 5-HT3 receptor cDNAs. Ann NY Acad Sci 1998; 15: 234–235.

    Article  Google Scholar 

  63. Heidmann DEA, Metcalf MA, Kohen R, Hamblin MW . Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron–exon organization. J Neurochem 1997; 68: 1372–1381.

    Article  CAS  Google Scholar 

  64. Cook Jr E, Fletcher K, Wainwright M, Marks N, Yan S, Leventhal B . Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor. J Neurochem 1994; 63: 465–469.

    Article  CAS  Google Scholar 

  65. Kohen R, Metcalf M, Khan N, Druck T, Huebner K, Lachowicz J et al. Cloning, characterization and chromosomal localization of a human 5- HT6 serotonin receptor. J Neurochem 1996; 66: 47–56.

    Article  CAS  Google Scholar 

  66. Chang D, Chang T, Yamanishi S, Salazar F, Kosaka A, Khare R et al. Molecular cloning, genomic characterization and expression of novel human alpha1A-adrenoceptor isoforms. FEBS Lett 1998; 422: 279–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge all volunteers for the helpful donation of blood and bone marrow samples. This study was supported in part by a grant from the Stanley Research Foundation. AP is the recipient of an NH&MRC Dora Lush Postgraduate Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Pereira.

Additional information

DUALITY OF INTEREST

No conflict of interest arises from this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A., McLaren, A., Bell, W. et al. Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow. Pharmacogenomics J 3, 227–234 (2003). https://doi.org/10.1038/sj.tpj.6500179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500179

Keywords

This article is cited by

Search

Quick links