Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silencing the MET oncogene leads to regression of experimental tumors and metastases

Abstract

In spite of the established knowledge of the genetic alterations responsible for cancer onset, the genes promoting and maintaining the invasive/metastatic phenotype are still elusive. The MET proto-oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF), senses unfavorable micro-environmental conditions and drives cell invasion and metastasis. MET overexpression, often induced by tumor hypoxia, leads to constitutive activation of the receptor and correlates with poor prognosis. To establish the role of MET in different phases of tumor progression, we developed an inducible lentiviral delivery system of RNA interference. Silencing the endogenous MET gene, overexpressed in tumor cells, resulted in (i) impairment of the execution of the full invasive growth program in vitro, (ii) lack of tumor growth and (iii) decreased generation of experimental metastases in vivo. Notably, silencing MET in already established metastases led to their almost complete regression. This indicates that persistent expression of the MET oncogene is mandatory until the advanced phases of cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bardelli A, Basile ML, Audero E, Giordano S, Wennstrom S, Menard S et al. (1999). Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. Oncogene 18: 1139–1146.

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915–925.

    Article  CAS  PubMed  Google Scholar 

  • Boccaccio C, Sabatino G, Medico E, Girolami F, Follenzi A, Reato G et al. (2005). The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 434: 396–400.

    Article  CAS  PubMed  Google Scholar 

  • Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119: 629–641.

    Article  CAS  PubMed  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC . (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N et al. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P et al. (2003). A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63: 7345–7355.

    CAS  PubMed  Google Scholar 

  • Comoglio PM, Trusolino L . (2002). Invasive growth: from development to metastasis. J Clin Invest 109: 857–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbel SY, Rossi FM . (2002). Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Curr Opin Biotechnol 13: 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Corso S, Comoglio PM, Giordano S . (2005). Cancer therapy: can the challenge be MET? Trends Mol Med 11: 284–292.

    Article  CAS  PubMed  Google Scholar 

  • Danilkovitch A, Zbar B . (2002). Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest 109: 863–867.

    Article  Google Scholar 

  • Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L et al. (1995a). Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1: 147–154.

    CAS  PubMed  Google Scholar 

  • Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD et al. (2000). Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19: 1547–1555.

    Article  CAS  PubMed  Google Scholar 

  • Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR . (1995b). Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 55: 1129–1138.

    CAS  PubMed  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Felsher DW, Bishop JM . (1999). Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4: 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ . (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Fixman ED, Naujokas MA, Rodrigues GA, Moran MF, Park M . (1995). Efficient cell transformation by the Tpr-Met oncoprotein is dependent upon tyrosine 489 in the carboxy-terminus. Oncogene 10: 237–249.

    CAS  PubMed  Google Scholar 

  • Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . (2000). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25: 217–222.

    Article  CAS  PubMed  Google Scholar 

  • Frisch SM, Screaton RA . (2001). Anoikis mechanisms. Curr Opin Cell Biol 13: 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Galimi F, Cottone E, Vigna E, Arena N, Boccaccio C, Giordano S et al. (2001). Hepatocyte growth factor is a regulator of monocyte-macrophage function. J Immunol 166: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  • Gambarotta G, Boccaccio C, Giordano S, Ando M, Stella MC, Comoglio PM . (1996). Ets up-regulates MET transcription. Oncogene 13: 1911–1917.

    CAS  PubMed  Google Scholar 

  • Gao CF, Vande Woude GF . (2005). HGF/SF-Met signaling in tumor progression. Cell Res 15: 49–51.

    Article  PubMed  Google Scholar 

  • Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D et al. (2002). The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4: 720–724.

    Article  CAS  PubMed  Google Scholar 

  • Graziani A, Gramaglia D, Cantley LC, Comoglio PM . (1991). The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem 266: 22087–22090.

    CAS  PubMed  Google Scholar 

  • Grotegut S, von Schweinitz D, Christofori G, Lehembre F . (2006). Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25: 3534–3545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan KD et al. (2003). Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 17: 488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta GP, Massague J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    Article  CAS  PubMed  Google Scholar 

  • Huettner CS, Zhang P, Van Etten RA, Tenen DG . (2000). Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24: 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D . (1997). Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 14: 2417–2423.

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. (2002). Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Kong-Beltran M, Stamos J, Wickramasinghe D . (2004). The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 6: 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M et al. (2000). A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19: 4947–4953.

    Article  CAS  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B . (1998). Genetic instabilities in human cancers. Nature 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R . (2002). Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 13: 41–59.

    Article  CAS  PubMed  Google Scholar 

  • Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L et al. (2004). Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6: 61–73.

    Article  CAS  PubMed  Google Scholar 

  • Nowell PC . (1976). The clonal evolution of tumor cell populations. Science 194: 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Patane S, Avnet S, Coltella N, Costa B, Sponza S, Olivero M et al. (2006). MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 66: 4750–4757.

    Article  CAS  PubMed  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM . (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3: 347–361.

    Article  PubMed  Google Scholar 

  • Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S et al. (2006). Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci USA 103: 5090–5095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S et al. (1994). A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77: 261–271.

    Article  CAS  PubMed  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM . (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: 437–443.

    Article  CAS  PubMed  Google Scholar 

  • Prat M, Crepaldi T, Gandino L, Giordano S, Longati P, Comoglio P . (1991). C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol 11: 5954–5962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rege-Cambrin G, Scaravaglio P, Carozzi F, Giordano S, Ponzetto C, Comoglio PM et al. (1992). Karyotypic analysis of gastric carcinoma cell lines carrying an amplified c-met oncogene. Cancer Genet Cytogenet 64: 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Rong S, Segal S, Anver M, Resau JH, Vande Woude GF . (1994). Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci USA 91: 4731–4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosario M, Birchmeier W . (2004). Making tubes: step by step. Dev Cell 7: 3–5.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M et al. (1999). Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18: 2343–2350.

    Article  CAS  PubMed  Google Scholar 

  • Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW et al. (2004). RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res 64: 7962–7970.

    Article  CAS  PubMed  Google Scholar 

  • Skibinski G, Skibinska A, James K . (2001). The role of hepatocyte growth factor and its receptor c-met in interactions between lymphocytes and stromal cells in secondary human lymphoid organs. Immunology 102: 506–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H et al. (2006). Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci USA 103: 2316–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama H, Larochelle WJ, Sharp R, Otsuka T, Kriebel P, Anver M et al. (1997). Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 94: 701–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taulli R, Accornero P, Follenzi A, Mangano T, Morotti A, Scuoppo C et al. (2005). RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis. Cancer Gene Ther 12: 456–463.

    Article  CAS  PubMed  Google Scholar 

  • Taulli R, Scuoppo C, Bersani F, Accornero P, Forni PE, Miretti S et al. (2006). Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res 66: 4742–4749.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP . (2003). Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746.

    Article  CAS  PubMed  Google Scholar 

  • Thompson EW, Newgreen DF, Tarin D . (2005). Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res 65: 5991–5995.

    Article  CAS  PubMed  Google Scholar 

  • Trusolino L, Comoglio PM . (2002). Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2: 289–300.

    Article  CAS  PubMed  Google Scholar 

  • Trusolino L, Bertotti A, Comoglio PM . (2001). A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 107: 643–654.

    Article  CAS  PubMed  Google Scholar 

  • Valabrega G, Montemurro F, Sarotto I, Petrelli A, Rubini P, Tacchetti C et al. (2005). TGFalpha expression impairs Trastuzumab-induced HER2 downregulation. Oncogene 24: 3002–3010.

    Article  CAS  PubMed  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. (2003). Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO R 4: 609–615.

    Article  CAS  Google Scholar 

  • Vande Woude GF, Jeffers M, Cortner J, Alvord G, Tsarfaty I, Resau J . (1997). Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found Symp 212: 119–130.

    CAS  PubMed  Google Scholar 

  • Vigna E, Naldini L . (2000). Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2: 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726.

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM . (2001). Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153: 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Vande Woude GF . (2003). HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 88: 408–417.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E Vigna and L Naldini for providing lentiviral vectors; L Tamagnone and our colleagues for helpful discussions; R Albano, R LoNoce and L Palmas for technical assistance. This study was supported by AIRC (grants to SG and PMC), MIUR (grant to SG) and Regione Piemonte (grant to SG). CM is the recipient of a Lagrange fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Giordano.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corso, S., Migliore, C., Ghiso, E. et al. Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 27, 684–693 (2008). https://doi.org/10.1038/sj.onc.1210697

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210697

Keywords

This article is cited by

Search

Quick links