Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design

Abstract

The post-translational modification of histones plays an important role in chromatin regulation, a process that insures the fidelity of gene expression and other DNA transactions. Of the enzymes that mediate post-translation modification, the histone acetyltransferase (HAT) and histone deacetylase (HDAC) proteins that add and remove acetyl groups to and from target lysine residues within histones, respectively, have been the most extensively studied at both the functional and structural levels. Not surprisingly, the aberrant activity of several of these enzymes have been implicated in human diseases such as cancer and metabolic disorders, thus making them important drug targets. Significant mechanistic insights into the function of HATs and HDACs have come from the X-ray crystal structures of these enzymes both alone and in liganded complexes, along with associated enzymatic and biochemical studies. In this review, we will discuss what we have learned from the structures and related biochemistry of HATs and HDACs and the implications of these findings for the design of protein effectors to regulate gene expression and treat disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Anekonda TS, Reddy PH . (2006). Neuronal protection by sirtuins in Alzheimer's disease. J Neurochem 96: 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Avalos JL, Bever KM, Wolberger C . (2005). Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17: 855–868.

    Article  CAS  PubMed  Google Scholar 

  • Avalos JL, Boeke JD, Wolberger C . (2004). Structural basis for the mechanism and regulation of Sir2 enzymes. Mol Cell 13: 639–648.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP et al. (2004a). Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279: 33716–33726.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U et al. (2004b). Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279: 51163–51171.

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet [see comment]. Nature 444: 337–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndsen CE, Albaugh BN, Tan S, Denu JM . (2007). Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46: 623–629.

    Article  CAS  PubMed  Google Scholar 

  • Biel M, Wascholowski V, Giannis A . (2005). Epigenetics – an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed Engl 44: 3186–3216.

    Article  CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  • Borra MT, Smith BC, Denu JM . (2005). Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280: 17187–17195.

    Article  CAS  PubMed  Google Scholar 

  • Brownell J, Allis C . (1996). Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6: 176–184.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependant regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ . (2000). MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 28: 138–144.

    Article  CAS  PubMed  Google Scholar 

  • Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P et al. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100: 10794–10799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements A, Marmorstein R . (2003). Structure and function of histone acetyltransferase domains. Methods Enzymol 371: 545–564.

    Article  CAS  PubMed  Google Scholar 

  • Clements A, Rojas JR, Trievel RC, Wang L, Berger SL, Marmorstein R . (1999). Crystal structure of the histone acetyltransferase domain of the human P/CAF transcriptional regulator bound to coenzyme-A. EMBO J 18: 3521–3532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB . (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370: 737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Frye RA . (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273: 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C . (2007). HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapuetics. Cell Res 17: 195–211.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, Peters DJM, Breuning MH . (1998). Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 14: 178–183.

    Article  CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV . (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31.

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Guarente LP . (2006). Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Develop 20: 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ et al. (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126: 941–954.

    Article  CAS  PubMed  Google Scholar 

  • Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S et al. (2006). Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66: 4368–4377.

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL et al. (2005). Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102: 8567–8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoff KG, Avalos JL, Sens K, Wolberger C . (2006). Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure 14: 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Johnson FB, Marciniak RA, McVey M, Park PU, Guarente L . (2000). Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 65: 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MD, Denu JM . (2002). Structural identification of 2′- and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta-NAD+-dependent histone/protein deacetylases. J Biol Chem 277: 18535–18544.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM . (2003). Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem 278: 50985–50998.

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD et al. (2005). Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280: 17038–17045.

    Article  CAS  PubMed  Google Scholar 

  • Kelly WK, O’Connor OA, Marks PA . (2002). Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 11: 1695–1713.

    Article  CAS  PubMed  Google Scholar 

  • Kelly WK, Richon VM, O’Connor O, Curley T, MacGregor-Curtelli B, Tong W et al. (2003). Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9: 3578–3588.

    CAS  PubMed  Google Scholar 

  • Khan AN, Lewis PN . (2006). Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem 281: 11702–11711.

    Article  CAS  PubMed  Google Scholar 

  • Kiviranta PH, Leppanen J, Kyrylenko S, Salo HS, Lahtela-Kakkonen M, Tervo AJ et al. (2006). N,N′-bisbenzylidenebenzene-1,4-diamines and N,N′-bisbenzylidenenaphthalene-1,4-diamines as Sirtuin type 2 (SIRT2) inhibitors. J Med Chem 49: 7907–7911.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K et al. (2005). SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 16: 237–243.

    CAS  PubMed  Google Scholar 

  • Kumagai T, Wakimoto N, Yin D, Gery S, Kawamata N, Takai N et al. (2007). Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 121: 656–665.

    Article  CAS  PubMed  Google Scholar 

  • Lau OD, Courtney AD, Vassilev A, Marzilli LA, Cotter RJ, Nakatani Y et al. (2000a). p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J Biol Chem 275: 21953–21959.

    Article  CAS  PubMed  Google Scholar 

  • Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A et al. (2000b). HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 5: 539–595.

    Article  Google Scholar 

  • Lin HY, Chen CS, Lin SP, Weng JR, Chen CS . (2006). Targeting histone deacetylase in cancer therapy. Med Res Rev 26: 397–413.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Fletcher CM, Zhou J, Allis CD, Wagner G . (1999). Solution structure of the catalytic domain of Tetrahymena GCN5 histone acetyltransferase in complex with coenzyme A. Nature 400: 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Liszt G, Ford E, Kurtev M, Guarente L . (2005). Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280: 21313–21320.

    Article  CAS  PubMed  Google Scholar 

  • Loyola A, Almouzni G . (2004). Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 1677: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ . (1997). Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389: 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Manson MM, Farmer PB, Gescher A, Steward WP . (2005). Innovative agents in cancer prevention. Recent Results Cancer Res 166: 257–275.

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Jiang X . (2005). Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 4: 549–551.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R . (2001a). Structure and function of histone acetyltransferases. Cell Mol Life Sci 58: 693–703.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R . (2001b). Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9: 1127–1133.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R . (2004). Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochem Soc Trans 32: 904–909.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R, Roth SY . (2001a). Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11: 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R, Roth SY . (2001b). Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11: 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Mizzen CA, Allis CD . (1998). Linking histone acetylation to transcriptional regulation. Cell Mol Life Sci 54: 6–20.

    Article  CAS  PubMed  Google Scholar 

  • Moreth K, Riester D, Hildmann C, Hempel R, Wegener D, Schober A et al. (2007). An active site tyrosine residue is essential for amidohydrolase but not for esterase activity of a class 2 histone deacetylase-like bacterial enzyme. Biochem J 401: 659–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraoka M, Konishi M, KikuchiYanoshita R, Tanaka K, Shitara N, Chong JM et al. (1996). p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12: 1565–1569.

    CAS  PubMed  Google Scholar 

  • Neuwald AF, Landsman D . (1997). GCN5-related histone N-acetyltransferases belong to a diverse superfamily that include the yeast SPT10 protein. Trends Biochem Sci 22: 154–155.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TK, Hildmann C, Dickmanns A, Schwienhorst A, Ficner R . (2005). Crystal structure of a bacterial class 2 histone deacetylase homologue. J Mol Biol 354: 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TK, Hildmann C, Riester D, Wegener D, Schwienhorst A, Ficner R . (2007). Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluromethylketone inhibitor. Acta Crystallogr Sect F Struc Biol Cryst Commun 63: 270–273.

    Article  CAS  Google Scholar 

  • Nightingale KP, O’Neill L P, Turner BM . (2006). Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16: 125–136.

    Article  CAS  PubMed  Google Scholar 

  • Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H et al. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37: 349–350.

    Article  CAS  PubMed  Google Scholar 

  • Parthun MR et al. (2007) Hat1: the emerging cellular roles of a type ‘B’ histone acetyltransferase. Oncogene 26: 5319–5328.

    Article  CAS  PubMed  Google Scholar 

  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Oliveira RM et al. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429: 771–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A . (2004). Inhibitors of Sir2: evaluation of splitomicin analogues. J Med Chem 47: 2635–2644.

    Article  CAS  PubMed  Google Scholar 

  • Poux AN, Marmorstein R . (2003). Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Biochemistry 42: 14366–14374.

    Article  CAS  PubMed  Google Scholar 

  • Poux AN, Cebrat M, Kim CM, Cole PA, Marmorstein R . (2002). Structure of the GCN5 histone acetyltransferase bound to a bisubstrate inhibitor. Proc Natl Acad Sci USA 99: 14065–14070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas JR, Trievel RC, Zhou J, Mo Y, Li X, Berger SL et al. (1999). Structure of the Tetrahymena GCN5 bound to coenzyme-A and a histone H3 peptide. Nature 401: 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Sagar V, Zheng W, Thompson PR, Cole PA . (2004). Bisubstrate analogue structure–activity relationships for p300 histone acetyltransferase inhibitors. Bioorg Med Chem 12: 3383–3390.

    Article  CAS  PubMed  Google Scholar 

  • Sanders BD, Zhao K, Slama JT, Marmorstein R . (2007). Structural basis for nicotinamide inhibition and base exchange in sir2 enzymes. Mol Cell 25: 463–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauve AA, Schramm VL . (2003). Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42: 9249–9256.

    Article  CAS  PubMed  Google Scholar 

  • Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL . (2001a). Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40: 15456–15463.

    Article  CAS  PubMed  Google Scholar 

  • Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL . (2001b). Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40: 15456–15463.

    Article  CAS  PubMed  Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD . (2006). The biochemistry of sirtuins. Annu Rev Biochem 75: 435–465.

    Article  CAS  PubMed  Google Scholar 

  • Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A et al. (2007). Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15: 377–389.

    Article  CAS  PubMed  Google Scholar 

  • Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A, Sanchez-Madrid F . (2004). HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20: 417–428.

    Article  CAS  PubMed  Google Scholar 

  • Smith BC, Denu JM . (2007). Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NAD+ cleavage. J Am Chem Soc 129: 5802–5805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somoza JR, Kene RJ, Katz BA, Mol C, Ho JD, Jennings AJ : et al. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12: 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  • Sterner DE, Berger SL . (2000a). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterner DE, Berger SL . (2000b). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders LR, Verdin EL . (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26: 5489–5504.

    Article  CAS  PubMed  Google Scholar 

  • Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD et al. (1999). Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 274: 18157–18160.

    Article  CAS  PubMed  Google Scholar 

  • Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D et al. (2004). Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol 11: 308–315.

    Article  CAS  PubMed  Google Scholar 

  • Timmermann S . (2001). Histone acetylation and disease. Cell Mol Life Sci 58: 728–736.

    Article  CAS  PubMed  Google Scholar 

  • Trievel RC, Rojas JR, Sterner DE, Venkataramani R, Wang L, Zhou J et al. (1999). Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA 96: 8931–8936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannini A, Volpari C, Filocamo G, Casavola E, Brunetti M, Rezoni D et al. (2004). Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101: 15064–15069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanommeslaeghe K, De Proft F, Loverix S, Tourwe D, Geerlings P . (2005). Theoretical study revealing the functioning of a novel combination of catalytic motifs in histone deacetylase. Bioorg Med Chem 13: 3987–3992.

    Article  CAS  PubMed  Google Scholar 

  • Varga-Weisz PD, Becker PB . (2006). Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 16: 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Varier RA, Swaminathan V, Balasubramanyam K, Kundu TK . (2004). Implications of small molecule activators and inhibitors of histone acetyltransferases in chromatin therapy. Biochem Pharmacol 68: 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M et al. (2004a). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430: 686–689.

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M et al. (2004b). Sirtuin activators mimic caloric restriction and delay ageing in metazoans [erratum appears in Nature 2004; 431: 107]. Nature 430: 686–689.

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL . (2006). Chromatin architecture. Curr Opin Struct Biol 16: 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R . (2000). Crystal structure of yeast Esa1 suggests a unified mechanism of catalysis and substrate binding by histone acetyltransferases. Mol Cell 6: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Harper S, Speicher DW, Marmorstein R . (2002). The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate. Nat Struct Biol 9: 862–869.

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Dent SY . (2005). Histone modifying enzymes and cancer: going beyond histones. J Cell Biochem 96: 1137–1148.

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Harshaw R, Chai X, Marmorstein R . (2004). Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. Proc Natl Acad Sci USA 101: 8563–8568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Thompson PR, Cebrat M, Wang L, Devlin MK, Alani RM et al. (2004). Selective HAT inhibitors as mechanistic tools for protein acetylation. Methods Enzymol 376: 188–199.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Marmorstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodawadekar, S., Marmorstein, R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26, 5528–5540 (2007). https://doi.org/10.1038/sj.onc.1210619

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210619

Keywords

This article is cited by

Search

Quick links