Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors

Abstract

KIT or α-platelet-derived growth factor receptor (α-PDGFR) activating mutations are the pathogenic mechanisms that characterize gastrointestinal stromal tumors (GIST). Despite excellent responses to imatinib mesylate (IM), patients are relapsing. We developed an IM-resistant GIST cell line (GIST-R) from the IM-sensitive GIST882 cell line (GIST-S) by growing these cells in IM. Gene expression profiling (GEP) of GIST-S, GIST-R cells and two IM resistant GIST patients demonstrated that KIT is downregulated implying a major role in IM resistance. Instead, GIST-R cells have acquired IM resistance by overexpressing the oncogenic receptor tyrosine kinase – AXL – in a ‘kinase switch’. Further, the two IM resistant GIST patients express AXL and not c-Kit, seen by immunohistochemistry (IHC). Real time reverse transcriptase–polymerase chain reaction and Western blotting of the GIST-S and GIST-R cells confirmed the switch from Kit to AXL. In GIST-R, AXL is tyrosine phosphorylated and its ligand growth-arrest-specific gene 6 is overexpressed implying autocrine activation. The kinase switch is associated with a morphological change from spindle to epithelioid. Molecular modeling of the kinase domain of mutant c-Kit (V654A) and AXL showed no binding to IM but efficient binding to MP470, a novel c-Kit/AXL kinase inhibitor. MP470 synergizes with docetaxel (taxotere) and is cytotoxic to GIST cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17–32.

    Article  CAS  Google Scholar 

  • Andreasen PA, Egelund R, Petersen HH . (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57: 25–40.

    Article  CAS  Google Scholar 

  • Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B . (2005). Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11: 4182–4190.

    Article  CAS  Google Scholar 

  • Bauer S, Hubert C, Heinrich MC, Cohen P, Bertagnolli M, Demetri GD et al. (2005). KIT hyperactivation in imatinib-resistant GIST: implications for salvage therapies. ASCO#9034 23: 824s.

    Google Scholar 

  • Buchholz M, Biebl A, Neebetae A, Wagner M, Iwamura T, Leder G et al. (2003). SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res 63: 4945–4951.

    CAS  PubMed  Google Scholar 

  • Chen J, Carey K, Godowski PJ . (1997). Identification of Gas6 as a ligand for Mer, a neural cell adhesion molecule related receptor tyrosine kinase implicated in cellular transformation. Oncogene 14: 2033–2039.

    Article  CAS  Google Scholar 

  • Chen LL, Sabripour M, Andtbacka RH, Patel SR, Feig BW, Macapinlac HA et al. (2005). Imatinib resistance in gastrointestinal stromal tumors. Curr Oncol Rep 7: 293–299.

    Article  CAS  Google Scholar 

  • Chen LL, Trent JC, Wu EF, Fuller GN, Ramdas L, Zhang W et al. (2004). A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res 64: 5913–5919.

    Article  CAS  Google Scholar 

  • Corless CL, Fletcher JA, Heinrich MC . (2004). Biology of gastrointestinal stromal tumors. J Clin Oncol 22: 3813–3825.

    Article  CAS  Google Scholar 

  • Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM . (1987). Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236: 799–806.

    Article  CAS  Google Scholar 

  • Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N et al. (2005). Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128: 270–279.

    Article  CAS  Google Scholar 

  • Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G . (2002). Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol 33: 466–477.

    Article  CAS  Google Scholar 

  • Dematteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF . (2000). Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231: 51–58.

    Article  CAS  Google Scholar 

  • Duffaud F, Blay JY . (2003). Gastrointestinal stromal tumors: biology and treatment. Oncology 65: 187–197.

    Article  Google Scholar 

  • Haldar S, Basu A, Croce CM . (1997). Bcl2 is the guardian of microtubule integrity. Cancer Res 57: 229–233.

    CAS  Google Scholar 

  • Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N et al. (2003). PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299: 708–710.

    Article  CAS  Google Scholar 

  • Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S et al. (1998). Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580.

    Article  CAS  Google Scholar 

  • Holland S, Powell M, Franci C, Chan E, Friera A, Atchison R et al. (2005). Multiple roles for the receptor tyrosine kinase axl in tumor formation. Cancer Res 65: 9294–9303.

    Article  CAS  Google Scholar 

  • Kelley LA, MacCallum RM, Sternberg MJ . (2000). Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299: 499–520.

    Article  CAS  Google Scholar 

  • Kitamura Y, Hirotab S . (2004). Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 61: 2924–2931.

    Article  CAS  Google Scholar 

  • Kristiansen G, Sammar M, Altevogt P . (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35: 255–262.

    Article  CAS  Google Scholar 

  • Laskowski R, MacArthur M, Moss D, Thornton J . (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26: 283–291.

    Article  CAS  Google Scholar 

  • Mahadevan D, Riley C, Simons B, Della Croce K, Wisner L, Iorio M . (2005a). Mechanisms of gleevec resistance in GIST and potential therapeutic interventions. AACR #507, 96th Annual Meeting April 16–20, 2005. Anaheim/Orange County, CA.

  • Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C et al. (2005b). Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther 4: 1867–1879.

    Article  CAS  Google Scholar 

  • McLean SR, Gana-Weisz M, Hartzoulakis B, Frow R, Whelan J, Selwood D et al. (2005). Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther 4: 2004–2015.

    Article  Google Scholar 

  • Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L et al. (2004). Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6: 61–73.

    Article  CAS  Google Scholar 

  • Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN et al. (2004). Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 279: 31655–31663.

    Article  CAS  Google Scholar 

  • Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang BC et al. (2003). Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem 278: 31461–31464.

    Article  CAS  Google Scholar 

  • O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C et al. (1991). Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 11: 5016–5031.

    Article  CAS  Google Scholar 

  • Pautsch A, Zoephel A, Ahorn H, Spevak W, Hauptmann R, Nar H . (2001). Crystal structure of bisphosphorylated IGF-1 receptor kinase: insight into domain movements upon kinase activation. Structure 9: 955–965.

    Article  CAS  Google Scholar 

  • Perez-Atayde AR, Shamberger RC, Kozakewich HW . (1993). Neuroectodermal differentiation of the gastrointestinal tumors in the Carney triad. An ultrastructural and immunohistochemical study. Am J Surg Pathol 17: 706–714.

    Article  CAS  Google Scholar 

  • Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R et al. (2003). Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci USA 100: 12654–12659.

    Article  CAS  Google Scholar 

  • Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y et al. (2004). Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem 279: 6840–6848.

    Article  CAS  Google Scholar 

  • Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C et al. (1995). The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80: 661–670.

    Article  CAS  Google Scholar 

  • Theou N, Gil S, Devocelle A, Julie C, Lavergne-Slove A, Beauchet A et al. (2005). Multidrug resistance proteins in gastrointestinal stromal tumors: site-dependent expression and initial response to imatinib. Clin Cancer Res 11: 7593–7598.

    Article  CAS  Google Scholar 

  • Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD et al. (2001). STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20: 5054–5058.

    Article  CAS  Google Scholar 

  • Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY et al. (2004). Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364: 1127–1134.

    Article  CAS  Google Scholar 

  • Wang LG, Liu XM, Kreis W, Budman DR . (1999). The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44: 355–361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the American Cancer Society (IRG7400128, CA23074). The parental GIST882 cell line was provided by Dr Jonathan Fletcher (Dana-Farber Cancer Institute, Boston). We thank Dr G Watts for help and guidance in the analysis of the gene expression profiling studies. Immunohistochemical data was generated by the TACMASS Core (Tissue Acquisition and Cellular/Molecular Analysis Shared Service) at the Arizona Cancer Center, supported by NIH Grant CA23074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahadevan, D., Cooke, L., Riley, C. et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 26, 3909–3919 (2007). https://doi.org/10.1038/sj.onc.1210173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210173

Keywords

This article is cited by

Search

Quick links