Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Arsenic trioxide induces regulated, death receptor-independent cell death through a Bcl-2-controlled pathway

Abstract

Arsenic trioxide (As2O3, arsenite) efficiently kills cells from various hematologic malignancies and has successfully been employed especially for the treatment of acute promyelocytic leukemia. There and in lymphoid cells, we demonstrated that As2O3 induces cell death in a caspase-2- and -9-independent fashion. Here, we address a potential role of death receptor signaling through the FADD/caspase-8 death-inducing signaling complex in As2O3-induced cell death. In detail, we demonstrate that As2O3 induces cell death independently of caspase-8 or FADD and cannot be blocked by disruption of CD95/Fas receptor ligand interaction. Unlike in death receptor ligation-induced apoptosis, As2O3-induced cell death was not blocked by the broad-spectrum caspase inhibitor z-VAD-fmk or the caspase-8-specific inhibitor z-IETD-fmk. Nevertheless, As2O3-induced cell death occurred in a regulated manner and was abrogated upon Bcl-2 overexpression. In contrast, As2O3-induced cell demise was neither blocked by the caspase-9 inhibitor z-LEHD-fmk nor substantially inhibited through the expression of a dominant negative caspase-9 mutant. Altogether our data demonstrate that As2O3-induced cell death occurs independently of the extrinsic death receptor pathway of apoptosis. Cell death proceeds entirely via an intrinsic, Bcl-2-controlled mitochondrial pathway that does, however, not rely on caspase-9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Akao Y, Mizoguchi H, Kojima S, Naoe T, Ohishi N and Yagi K . (1998). Br. J. Haematol., 102, 1055–1060.

  • Belka C, Gruber C, Jendrossek V, Wesselborg S and Budach W . (2003). Oncogene, 22, 176–185.

  • Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W and Schulze-Osthoff K . (2000). Oncogene, 19, 1181–1190.

  • Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR and Salvesen GS . (2003). Mol. Cell, 11, 529–541.

  • Chandra D, Choy G, Deng X, Bhatia B, Daniel P and Tang DG . (2004). Mol. Cell. Biol., 24, 6592–6607.

  • Daniel PT, Kroidl A, Kopp J, Sturm I, Moldenhauer G, Dörken B and Pezzutto A . (1998). Blood, 92, 4750–4757.

  • Daniel PT, Schulze-Osthoff K, Belka C and Güner D . (2003). Essays Biochem., 39, 73–88.

  • Daniel PT, Wieder T, Sturm I and Schulze-Osthoff K . (2001). Leukemia, 15, 1022–1032.

  • Dhein J, Daniel PT, Trauth BC, Oehm A, Moller P and Krammer PH . (1992). J. Immunol., 149, 3166–3173.

  • Engels IH, Stepczynska A, Stroh C, Lauber K, Berg C, Schwenzer R, Wajant H, Janicke RU, Porter AG, Belka C, Gregor M, Schulze-Osthoff K and Wesselborg S . (2000). Oncogene, 19, 4563–4573.

  • Fischer U, Janicke RU and Schulze-Osthoff K . (2003). Cell Death Differ., 10, 76–100.

  • Hemmati PG, Gillissen B, von Haefen C, Wendt J, Starck L, Güner D, Dörken B and Daniel PT . (2002). Oncogene, 21, 3149–3161.

  • Hossain K, Akhand AA, Kato M, Du J, Takeda K, Wu J, Takeuchi K, Liu W, Suzuki H and Nakashima I . (2000). J. Immunol., 165, 4290–4297.

  • Jendrossek V, Handrick R and Belka C . (2003a). FASEB J., 17, 1547–1549.

  • Jendrossek V, Muller I, Eibl H and Belka C . (2003b). Oncogene, 22, 2621–2631.

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH and Peter ME . (1995). EMBO J., 14, 5579–5588.

  • Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ and Ashkenazi A . (2000). Immunity, 12, 611–620.

  • Kitamura K, Minami Y, Yamamoto K, Akao Y, Kiyoi H, Saito H and Naoe T . (2000). Leukemia, 14, 1743–1750.

  • Klöpfer A, Hasenjager A, Belka C, Schulze-Osthoff K, Dörken B and Daniel PT . (2004). Oncogene, 23, 9408–9418.

  • Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J and Kroemer G . (1999). Exp. Cell Res., 249, 413–421.

  • Liu Q, Hilsenbeck S and Gazitt Y . (2003). Blood, 101, 4078–4087.

  • Niu C, Yan H, Yu T, Sun HP, Liu JX, Li XS, Wu W, Zhang FQ, Chen Y, Zhou L, Li JM, Zeng XY, Yang RR, Yuan MM, Ren MY, Gu FY, Cao Q, Gu BW, Su XY, Chen GQ, Xiong SM, Zhang T, Waxman S, Wang ZY and Chen SJ . (1999). Blood, 94, 3315–3324.

  • Perkins C, Kim CN, Fang G and Bhalla KN . (2000). Blood, 95, 1014–1022.

  • Peter ME and Krammer PH . (2003). Cell Death Differ., 10, 26–35.

  • Rudner J, Jendrossek V, Lauber K, Daniel PT, Wesselborg S and Belka C . (2005). Oncogene, 24, 130–140.

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH and Peter ME . (1998). EMBO J., 17, 1675–1687.

  • Scholz C, Wieder T, Starck L, Essmann F, Schulze-Osthoff K, Dörken B and Daniel PT . (2005). Oncogene, 24, 1904–1913.

  • Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z and Wang ZY . (1997). Blood, 89, 3354–3360.

  • Sohn D, Schulze-Osthoff K and Janicke RU . (2005). J. Biol. Chem., 280, 5267–5273.

  • Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP and Warrell Jr RP . (1998). N. Engl. J. Med., 339, 1341–1348.

  • Vermes I, Haanen C, Steffens-Nakken H and Reutelingsperger C . (1995). J. Immunol. Methods, 184, 39–51.

  • von Haefen C, Gillissen B, Hemmati PG, Wendt J, Güner D, Mrozek A, Belka C, Dörken B and Daniel PT . (2004). Oncogene, 23, 8320–8332.

  • von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B and Daniel PT . (2003). Oncogene, 22, 2236–2247.

  • Wang ZG, Rivi R, Delva L, Konig A, Scheinberg DA, Gambacorti-Passerini C, Gabrilove JL, Warrell Jr RP and Pandolfi PP . (1998). Blood, 92, 1497–1504.

  • Weinmann M, Jendrossek V, Handrick R, Güner D, Goecke B and Belka C . (2004). Oncogene, 23, 3757–3769.

  • Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dörken B and Daniel PT . (2001). Blood, 97, 1378–1387.

  • Woo SH, Park IC, Park MJ, An S, Lee HC, Jin HO, Park SA, Cho H, Lee SJ, Gwak HS, Hong YJ, Hong SI and Rhee CH . (2004). Int. J. Cancer, 112, 596–606.

  • Zhang W, Ohnishi K, Shigeno K, Fujisawa S, Naito K, Nakamura S, Takeshita K, Takeshita A and Ohno R . (1998). Leukemia, 12, 1383–1391.

  • Zhu J, Okumura H, Ohtake S, Nakamura S and Nakao S . (2003). Oncol. Rep., 10, 705–709.

  • Zhu XH, Shen YL, Jing YK, Cai X, Jia PM, Huang Y, Tang W, Shi GY, Sun YP, Dai J, Wang ZY, Chen SJ, Zhang TD, Waxman S, Chen Z and Chen GQ . (1999). J. Natl. Cancer Inst., 91, 772–778.

Download references

Acknowledgements

This work was supported by a grant SCHO 534/2-1 from the Deutsche Forschungsgemeinschaft and a grant DJCLS-R01/02 from the Deutsche José Carreras Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, C., Richter, A., Lehmann, M. et al. Arsenic trioxide induces regulated, death receptor-independent cell death through a Bcl-2-controlled pathway. Oncogene 24, 7031–7042 (2005). https://doi.org/10.1038/sj.onc.1208868

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208868

Keywords

This article is cited by

Search

Quick links