Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A region of 35 kb containing the trace amine associate receptor 6 (TAAR6) gene is associated with schizophrenia in the Irish study of high-density schizophrenia families

Abstract

The TAAR6 gene has been previously associated with schizophrenia in 192 pedigrees of European and African ancestry. To replicate these findings we performed an association study of TAAR6 in 265 pedigrees of the Irish Study of High-Density Schizophrenia Families (ISHDSF). Of the 24 genotyped single-nucleotide polymorphisms only rs12189813 and rs9389011 provided single-marker evidence for association (0.0094P0.03). Two-marker haplotypes (rs7772821 and rs12189813; 0.0071P0.0023) and four-marker haplotypes (rs8192622, rs7772821, rs12189813 and rs9389011; 0.0047P0.018) gave strongest evidence for association. The associated high-risk (HR) haplotype in the ISHDSF is defined by the major alleles at rs7772821 and rs12189813 (0.00097P0.023). The associated HR remains positive in a case only test of association by Operational Criteria score analysis in which significant association was observed only with the highest threshold for delusions (P<0.009). When analysis was restricted to affected individuals under the core schizophrenia (D2) diagnosis, the observed associations for HR were most significant in the highest threshold for delusions (P<0.004) and hallucinations (P<0.0004), supporting the family-based association with schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE et al. Schizophrenia: manifestations, incidence and course in different countries – a World Health Organization Ten Country Study. Psychol Med Monogr Suppl 1992; 20: 1–97.

    Article  CAS  PubMed  Google Scholar 

  2. Kendler KS, Gruenberg AM, Kinney DK . Independent diagnosis of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish Adoption Study of Schizophrenia. Arch Gen Psychiatry 1994; 51: 456–468.

    Article  CAS  PubMed  Google Scholar 

  3. Kendler KS, Diehl SR . The genetics of schizophrenia: a current, genetic–epidemiologic perspective. Schizophr Bull 1993; 19: 261–285.

    Article  CAS  PubMed  Google Scholar 

  4. Duan J, Martinez M, Sanders AR, Hou C, Saitou N, Kitano T et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet 2004; 75: 624–638.

    Article  CAS  PubMed  Google Scholar 

  5. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC . Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 2005; 85: 372–385.

    Article  CAS  PubMed  Google Scholar 

  6. Davis BA, Boulton BA . The trace amines and their acidic metabolites in depression – an overview. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18: 17–45.

    Article  CAS  PubMed  Google Scholar 

  7. Sandler M, Ruthven CRJ, Goodwin BL, Coppen A . Decreased cerebrospinal fluid concentration of free phenylacetic acid in depressive illness. Clin Chim Acta 1979; 93: 169–171.

    Article  CAS  PubMed  Google Scholar 

  8. Potkin SG, Karoum F, Chuang LW, Cannon-Spoor HE, Phillips I, Wyatt RJ . Phenylethylamine in paranoid chronic schizophrenia. Science 1979; 206: 470–471.

    Article  CAS  PubMed  Google Scholar 

  9. Premont RT, Gainetdinov RR, Caron MG . Following the trace of elusive amines. Proc Natl Acad Sci USA 2001; 98: 9474–9475.

    Article  CAS  PubMed  Google Scholar 

  10. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 2001; 98: 8966–8971.

    Article  CAS  PubMed  Google Scholar 

  11. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 2001; 60: 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  12. Grossberg S . The imbalanced brain: from normal behavior to schizophrenia. Biol Psychiatry 2000; 48: 81–98.

    Article  CAS  PubMed  Google Scholar 

  13. Kendler KS, O'Neill FA, Burke J, Murphy B, Duke F, Straub RE et al. Irish study on high-density schizophrenia families: field methods and power to detect linkage. Am J Med Genet 1996; 67: 179–190.

    Article  CAS  PubMed  Google Scholar 

  14. McGuffin P, Farmer A, Harvey I . A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system. Arch Gen Psychiatry 1991; 48: 764–770.

    Article  CAS  PubMed  Google Scholar 

  15. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The Stanley Foundation brain collection and Neuropathology Consortium. Schizoph Res 2000; 44: 151–155.

    Article  CAS  Google Scholar 

  16. van den Oord EJCG, Jiang Y, Riley BP, Kendler KS, Chen X . FP-TDI SNP scoring by manual and statistical procedures: a study of error rates and types. Biotechniques 2003; 34: 610–624.

    Article  CAS  PubMed  Google Scholar 

  17. Rozen S, Skaletsky HJ . Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds). Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press: Totowa, NJ, 2000, pp 365–386.

    Google Scholar 

  18. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  Google Scholar 

  19. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  20. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  Google Scholar 

  21. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  22. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol Suppl 2000; 19: S36–S42.

    Article  Google Scholar 

  23. Rabinowitz D, Laird N . An unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000; 50: 211–223.

    Article  CAS  PubMed  Google Scholar 

  24. Martin ER, Monks SA, Warren LL, Kaplan NL . A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000; 67: 146–154.

    Article  CAS  PubMed  Google Scholar 

  25. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Gen Epidemiology 2003; 25: 115–121.

    Article  Google Scholar 

  26. Clayton D . A generalization of the transmission/disequilibrium test for uncertain haplotype transmission. Am J Hum Genet 1999; 65: 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  27. Clayton D, Jones H . Transmission/disequlibrium tests for extended marker haplotypes. Am J Hum Genet 1999; 65: 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quanti. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  29. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034.

    Article  PubMed  Google Scholar 

  30. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  Google Scholar 

  31. Stephens M, Donnelly PA . Comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  PubMed  Google Scholar 

  32. Couronne O, Poliakov A, Bray N, Ishkhanov T, Ryaboy D, Rubin E et al. Strategies and tools for whole-genome alignments. Genome Res 2003; 13: 73–80.

    Article  CAS  PubMed  Google Scholar 

  33. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH . Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 2004; 101: 7287–7292.

    Article  CAS  PubMed  Google Scholar 

  34. Mathews DH, Sabina J, Zuker M, Turner DH . Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biology 1999; 288: 911–940.

    Article  CAS  Google Scholar 

  35. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS . MicroRNA targets in Drosophila. Genome Biol 2003; 5: R1.

    Article  PubMed  Google Scholar 

  36. Griffiths-Jones S . The microRNA registry. Nucleic Acids Res 2004; 32: D109–D111.

    Article  CAS  PubMed  Google Scholar 

  37. Fanous AH, van den Oord EJ, Riley BP, Aggen SH, Neale MC, O'Neill FA . Relationship between a high-risk haplotype in the DTNBP1 (Dysbindin) gene and clinical features of schizophrenia. Am J Psychiatry 2005; 162: 1824–1832.

    Article  PubMed  Google Scholar 

  38. Puga I, Lainez B, Fernandez-Real JM, Buxade M, Broch M, Vendrell J et al. A polymorphism in the 3′ untranslated region of the gene for tumor necrosis factor receptor 2 modulates reporter gene expression. Endocrinology 2005; 146: 2210–2220.

    Article  CAS  PubMed  Google Scholar 

  39. Conne B, Stutz A, Vassalli JD . The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 2000; 6: 637–641.

    Article  CAS  PubMed  Google Scholar 

  40. Grün D, Wang Y-L, Langenberger D, Gunsalus KC, Rajewsky N . microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 2005; 1: e13.

    Article  PubMed  Google Scholar 

  41. Branchek TA, Blackburn TP . Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr Opin Pharmacol 2003; 3: 90–97.

    Article  CAS  PubMed  Google Scholar 

  42. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997; 43: 1–8.

    Article  CAS  PubMed  Google Scholar 

  43. Duan S, Du J, Xu Y, Xing Q, Wang H, Wu S et al. Failure to find association between TAAR6 and schizophrenia in the Chinese Han population. J Neural Transm 2005 [Advance online publication, August 3].

  44. Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y et al. No association of haplotype-tagging SNPs in TAAR6 with schizophrenia in Japanese patients. Schizophr Res 2005; 78: 127–130.

    Article  PubMed  Google Scholar 

  45. Amann D, Avidan N, Kanyas K, Kohn Y, Hamdan A, Ben-Asher E et al. The trace amine receptor 4 gene is not associated with schizophrenia in a sample linked to chromosome 6q23. Mol Psychiatry 2005 Adv online publication, September 27.

  46. Paciga SA, Fan Y-T, Walton KM, King DP . Identification of a haplotype in TAAR6 (TRAR4) associated with susceptibility to schizophrenia in a Caucasian population. The 55th Annual Meeting of the American Sociaty of Human Genetics. Salt Lake City, Utah, USA, October 25th–29th, 2005. Abstract book, p 316.

  47. Jamra RA, Sircar I, Becker T, Freudenberg-Hua Y, Ohlraun S, Freudenberg J et al. A family-based and case–control association study of trace amine receptor genes on chromosome 6q23 in bipolar affective disorder. Mol Psychiatry 2005; 10: 618–620.

    Article  PubMed  Google Scholar 

  48. Neale BN, Sham PC . The future of association studies: gene-based analysis and replication. Am J Hum Genet 2004; 75: 353–362.

    Article  CAS  PubMed  Google Scholar 

  49. Nakajima T, Jorde LB, Ishigami T, Umemura S, Emi M, Lalouel J-M et al. Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. Am J Hum Genet 2002; 70: 108–123.

    Article  CAS  PubMed  Google Scholar 

  50. Hilgers V, Pourquié O, Dubrulle J . In vivo analysis of mRNA using the Tet-Off system in chicken embryo. Dev Biol 2005; 284: 292–300.

    Article  CAS  PubMed  Google Scholar 

  51. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T . Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12: 735–739.

    Article  CAS  Google Scholar 

  52. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  53. Fanous AH, Kendler KS . Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Mol Psychiatry 2005; 10: 6–13.

    Article  CAS  PubMed  Google Scholar 

  54. Finch CE, Sapolsky RM . The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging 1999; 20: 407–428.

    Article  CAS  PubMed  Google Scholar 

  55. Conrad C, Vianna C, Schultz C, Thal DR, Ghebremedhin E, Lenz J et al. Molecular evolution and genetics of the Saitohin gene and tau haplotype in Alzheimer's disease and argyrophilic grain disease. J Neurochem 2004; 89: 179–188.

    Article  CAS  PubMed  Google Scholar 

  56. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A et al. The DNA sequence and biological annotation of human chromosome1. Nature 2006; 441: 315–321.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and families for their participation. This work was supported by NIH grants MH041953-13 and MH068881-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Vladimirov.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladimirov, V., Thiselton, D., Kuo, PH. et al. A region of 35 kb containing the trace amine associate receptor 6 (TAAR6) gene is associated with schizophrenia in the Irish study of high-density schizophrenia families. Mol Psychiatry 12, 842–853 (2007). https://doi.org/10.1038/sj.mp.4001984

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001984

Keywords

This article is cited by

Search

Quick links