Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Regulation of glucocorticoid receptor steroid binding and trafficking by the hsp90/hsp70-based chaperone machinery: implications for clinical intervention

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Tissing WJE, Meijerink JPP, den Boer ML, Brinkhof B, Pieters R . mRNA expression levels of (co)chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL. Leukemia 2005; 10 March [E-pub ahead of print].

  2. Lauten M, Beger C, Gerdes K, Asgedom G, Kardinal C, Welte K et al. Expression of heat-shock protein 90 in glucocorticoid-sensitive and -resistant childhood acute lymphoblastic leukaemia. Leukemia 2003; 17: 1551–1556.

    Article  CAS  Google Scholar 

  3. Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 94: 1209–1217.

    CAS  PubMed  Google Scholar 

  4. Tissing WJE, Meijerink JPP, den Boer ML, Pieters R . Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 2003; 17: 17–25.

    Article  CAS  Google Scholar 

  5. Haarman EG, Kaspers GJ, Veerman AJ . Glucocorticoid resistance in childhood leukaemia: mechanisms and modulation. Br J Haematol 2003; 120: 919–929.

    Article  CAS  Google Scholar 

  6. Parsell DA, Lindquist S . The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 1993; 27: 437–496.

    Article  CAS  Google Scholar 

  7. Pratt WB, Toft DO . Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18: 306–360.

    CAS  PubMed  Google Scholar 

  8. Pratt WB, Toft DO . Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 2003; 228: 111–133.

    Article  CAS  Google Scholar 

  9. Truss M, Beato M . Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev 1993; 14: 459–479.

    CAS  PubMed  Google Scholar 

  10. Sanchez ER, Meshinchi S, Tienrungroj W, Schlesinger MJ, Toft DO, Pratt WB . Relationship of the 90-kDa murine heat shock protein to the untransformed and transformed states of the L cell glucocorticoid receptor. J Biol Chem 1987; 262: 6986–6991.

    CAS  PubMed  Google Scholar 

  11. Murphy PJM, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB . Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem 2001; 276: 30092–30098.

    Article  CAS  Google Scholar 

  12. Murphy PJM, Morishima Y, Chen H, Galigniana MD, Mansfield JF, Simons Jr SS et al. Visualization and mechanism of assembly of a glucocorticoid receptor·hsp70 complex that is primed for subsequent hsp90-dependent opening of the steroid binding cleft. J Biol Chem 2003; 278: 34764–34773.

    Article  CAS  Google Scholar 

  13. Dittmar KD, Demady DR, Stancato LF, Krishna P, Pratt WB . Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery. The role of p23 is to stabilize receptor·hsp90 heterocomplexes formed by hsp90·p60·hsp70. J Biol Chem 1997; 272: 21213–21220.

    Article  CAS  Google Scholar 

  14. Harrell JM, Murphy PJM, Morishima Y, Chen H, Mansfield JF, Galigniana MD et al. Evidence for glucocorticoid receptor transport on microtubules by dynein. J Biol Chem 2004; 279: 54647–54654.

    Article  CAS  Google Scholar 

  15. Kanelakis KC, Morishima Y, Dittmar KD, Galigniana MD, Takayama S, Reed JC et al. Differential effects of the hsp70-binding protein BAG-1 on glucocorticoid receptor folding by the hsp90-based chaperone machinery. J Biol Chem 1999; 274: 34134–34140.

    Article  CAS  Google Scholar 

  16. Kanelakis KC, Murphy PJM, Galigniana MD, Morishima Y, Takayama S, Reed JC et al. Hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry 2000; 39: 14314–14321.

    Article  CAS  Google Scholar 

  17. Yufu Y, Nishimura J, Nawata H . High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leukemia Res 1992; 16: 597–605.

    Article  CAS  Google Scholar 

  18. Kojika S, Sugita K, Inukai T, Saito M, Iijima K, Tezuka T et al. Mechanisms of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70 kDa heat shock proteins. Leukemia 1996; 10: 994–999.

    CAS  PubMed  Google Scholar 

  19. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 1997; 272: 23843–23850.

    Article  CAS  Google Scholar 

  20. Supko JG, Hickman RL, Grever MR, Malspeis L . Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995; 36: 305–315.

    Article  CAS  Google Scholar 

  21. Pratt WB . The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 1998; 217: 420–434.

    Article  CAS  Google Scholar 

  22. Neckers L . Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002; 8: S55–S61.

    Article  CAS  Google Scholar 

  23. Rahmani M, Yu C, Dai Y, Reese E, Ahmed W, Dent P et al. Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res 2003; 63: 8420–8427.

    CAS  PubMed  Google Scholar 

  24. Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia 2001; 15: 1537–1543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J M Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, P. Regulation of glucocorticoid receptor steroid binding and trafficking by the hsp90/hsp70-based chaperone machinery: implications for clinical intervention. Leukemia 19, 710–712 (2005). https://doi.org/10.1038/sj.leu.2403687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403687

This article is cited by

Search

Quick links