Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Acute Promyelocytic Leukemia

Retinoic acid resistance in acute promyelocytic leukemia

Abstract

Primary resistance of PML-RARα-positive acute promyelocytic leukemia (APL) to the induction of clinical remission (CR) by all-trans retinoic acid (ATRA) is rare but markedly increases in frequency after ≥2 relapses from chemotherapy-induced CRs. Nevertheless, even in de novo cases, the primary response of ATRA-naive cases is variable by several measures, suggesting involvement of heterogeneous molecular elements. Secondary, acquired ATRA resistance occurs in most patients treated with ATRA alone and in many patients who relapse from combination ATRA chemotherapy regimens despite limited ATRA exposure. Although early studies suggested that an adaptive hypercatabolic response to pharmacological ATRA levels is the principal mechanism of ATRA resistance, recent studies suggest that molecular disturbances in APL cells have a predominant role, particularly if disease relapse occurs a few months after discontinuing ATRA therapy. This review summarizes the systemic and APL cellular elements that have been linked to clinical ATRA resistance with emphasis on identifying areas of deficient information and important topics for further investigation. Overall, the subject review strongly supports the hypothesis that, although APL is an infrequent and nearly cured disease, much can be gained by understanding the complex relationship of ATRA resistance to the progression and relapse of APL, which has important implications for other leukemias and malignancies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Warrell RP Jr, de The H, Wang ZY, Degos L . Acute promyelocytic leukemia N Engl J Med 1993 329: 177–189

    CAS  PubMed  Google Scholar 

  2. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, Biondi A, Lo Coco F, Grignani F, Pelicci PG . Acute promyelocytic leukemia: from genetics to treatment Blood 1994 83: 10–25

    CAS  PubMed  Google Scholar 

  3. Fenaux P, Chomienne C, Degos L . Acute promyelocytic leukemia: biology and treatment Semin Oncol 1997 24: 92–102

    CAS  PubMed  Google Scholar 

  4. Melnick A, Licht JD . Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia Blood 1999 93: 3167–3215

    CAS  PubMed  Google Scholar 

  5. Slack JL, Gallagher RE . The molecular biology of acute promyelocytic leukemia Cancer Treat Res 1999 99: 75–124

    CAS  PubMed  Google Scholar 

  6. Wiernik PW, Gallagher RE, Tallman MT . Diagnosis and treatment of acute promyelocytic leukemia In: Wiernik P, Goldman J, Kyle R (eds) Neoplastic Diseases of the Blood Cambridge Univerisity Press: London (in press)

  7. Warrell RP Jr . Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications Blood 1993 82: 1949–1953

    CAS  PubMed  Google Scholar 

  8. Huang M-E, Ye Y-C, Chen S-R, Chai J-R, Lu J-X, Lin Z, Gu L-J, Wang Z-Y . Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia Blood 1988 72: 567–572

    CAS  PubMed  Google Scholar 

  9. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L . All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results Blood 1990 76: 1704–1709

    CAS  PubMed  Google Scholar 

  10. Chen Z-X, Xue Y-Q, Zhang R, Tao R-F, Xia X-M, Li C, Wang W, Zu W-Y, Yao X-Z, Ling B-J . A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients Blood 1991 78: 1413–1419

    CAS  PubMed  Google Scholar 

  11. Castaigne S, Lefebvre P, Rigal-Huguet F, Gardin C, Montfort L, Luc E, Delmer A, Troncy J, Tilly H, Travade P, Gilles E, Rapp M, Montastruc M, Isnard F, Weh H, Christian B, Janvier M, Dombet H, Fenaux P, Chomienne C, Degos L . Effectiveness and pharmacokinetics of low-dose all-trans retinoic acid acid (25 mg/m2) in acute promyelocytic leukemia Blood 1992 82: 3560–3563

    Google Scholar 

  12. Fenaux P, Castaigne S, Chomienne C, Dombret H, Degos L . All trans retinoic acid treatment for patients with acute promyelocytic leukemia (APL): a pilot study Leukemia 1992 6: 64–69

    PubMed  Google Scholar 

  13. Ohno R, Yoshida H, Fukutani H, Naoe T, Ohshima T, Kyo T, Endoh N, Fujimoto T, Kobiyashi T, Hiraoka A, Mizoguchi H, Kodera Y, Suzuki H, Hirano M, Akiyama H, Aoki N, Shindo H, Yokomaku S . Multi-institutional study of all-trans-retinoic acid as a differentiation therapy of refractory acute promyelocytic leukemia Leukemia 1993 7: 1722–1727

    CAS  PubMed  Google Scholar 

  14. Warrell RP Jr, Maslak P, Eardley A, Geller G, Miller WH Jr, Frankel SR . Treatment of acute promyelcytic leukemia with all-trans retinoic acid: an update of the New York experience Leukemia 1994 8: 929–933

    PubMed  Google Scholar 

  15. Soignet S, Fleischauer A, Polyak T, Heller G, Warrell RP Jr . All-trans retinoic acid significantly increases 5-year survival in pateints with acute promyelocytic leukemia: long-term follow-up of the New York study Cancer Chemother Pharmacol 1997 40: S25–S29

    PubMed  Google Scholar 

  16. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JE, Ogden A, Shepherd L, Willman CL, Bloomfield CD, Rowe JM, Wiernik PH . All-trans retinoic acid in acute promyelocytic leukemia N Engl J Med 1997 337: 1021–1028

    CAS  PubMed  Google Scholar 

  17. Cortes J, Kantarjian H, O'Brien S, Robertson L, Koller C, Hirsh-Ginsberg C, Stass S . Keating M, Estey E. All-trans retinoic acid followed by chemotherapy for salvage of refractory or relapsed acute promyelocytic leukemia Cancer 1994 73: 2946–2952

    CAS  PubMed  Google Scholar 

  18. Asou N, Adachi K, Tamura J, Kanamaru S, Kageyama S, Hiraoka A, Omoto E, Akiyama H, Tsubaki K, Saito K, Kuriyama K, Oh H, Kitano K, Miyawaki S, Takeyama K, Yamada O, Nishikawa K, Takahashi M, Matsuda S, Ohtake S, Suzushima H, Emi N, Ohno R . Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy J Clin Oncol 1998 6: 78–85

    Google Scholar 

  19. Estey E, Koller C, Cortes J, Reed P, Freireich E, Giles F, Kantarjian H . Treatment of newly-diagnosed acute promyelocytic leukemia with liposomal all-trans retinoic acid Leuk Lymphoma 2001 42: 309–316

    CAS  PubMed  Google Scholar 

  20. Douer D, Estey E, Santillana S, Bennett JM, Lopez-Berestein G, Boehm K, Williams T . Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid Blood 2001 97: 73–80

    CAS  PubMed  Google Scholar 

  21. Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, Broccia G, Cerri R, Falda M, Fioritoni G, Leoni F, Liso V, Petti MC, Rodeghiero F, Saglio G, Vegna ML, Visani G, Jehn U, Willemze R, Muus P, Pelicci PG, Biondi A, Lo Coco F . Molecular remission in PML/RARα-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy Blood 1997 90: 1014–1021

    CAS  PubMed  Google Scholar 

  22. Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E, Fey M, Rayon C, Huguet F, Sotto JJ, Gardin C, Makhoul PC, Travade P, Solary E, Fegueux N, Bordessoule D, San Miguel J, Link H, Desablens B, Stamatoullas A, Deconinck E, Maloisel F, Castaigne S, Preudhomme C, Degos L . A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia Blood 1999 94: 1192–1200

    CAS  PubMed  Google Scholar 

  23. Sanz MA, Martin G, Rayon C, Esteve J, Gonzalez M, Diaz-Mediavilla J, Bolufer P, Barragan E, Terol MJ, Gonzalez JD, Colomer D, Chillon C, Rivas C, Gomez T, Ribera JM, Bornstein R, Roman J, Calasanz MJ, Arias J, Alvarez C, Ramos F, Deben G . A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARα-positive acute promyelocytic leukemia Blood 1999 94: 3015–3021

    CAS  PubMed  Google Scholar 

  24. Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH . Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial Blood 1999 93: 4131–4143

    CAS  PubMed  Google Scholar 

  25. Douer D . Advances in the treatment of relapsed acute promyelocytic leukemia Acta Haematol 2002 107: 1–17

    CAS  PubMed  Google Scholar 

  26. Charrin C, Ritouet D, Campos L, Devaux Y, Archimbaud E, Fraisse J, Fiere D, Germain D . Association of t(15;17) and t(8;21) in the initial phase of an acute promyelocytic leukemia Cancer Genet Cytogenet 1992 58: 177–180

    CAS  PubMed  Google Scholar 

  27. Movafagh A, Varma N, Varma S . Co-expression of two FAB-specific chromosome changes, t(15;17) and t(8;21) in a case of acute promyelocytic leukemia Ann Hematol 1996 72: 375–377

    CAS  PubMed  Google Scholar 

  28. Varella-Garcia M, Brizard F, Roche J, Flandrin G, Drabkin H, Brizard A . Aml1/ETO and Pml/RARA rearrangements in a case of AML-M2 acute myeloblastic leukemia with t(15;17) Leuk Lymphoma 1999 33: 403–404

    CAS  PubMed  Google Scholar 

  29. Stavroyianni N, Kalmantis T, Yataganas X . Simultaneous PML/RARα and AML/ETO gene rearrangements in a patient with acute myeloid leukemia Leukemia 1999 13: 1294–1295

    CAS  PubMed  Google Scholar 

  30. Bonomi R, Giordano H, Moreno M, Bodega E, Landom AI, Gallagher R, Uriarte R . Simultaneous PML/RARα and AML1/ETO expression with t(15;17) at onset and relapse with only t(8;21) in an acute promyelocytic leukemia patient Cancer Genet Cytogenet 2000 123: 41–43

    CAS  PubMed  Google Scholar 

  31. Ding W, Li YP, Nobile LM, Grills G, Carrera I, Paietta E, Tallman MS, Wiernik PH, Gallagher RE . Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARα fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy Blood 1998 92: 1172–1183

    CAS  PubMed  Google Scholar 

  32. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY . Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients Blood 1997 89: 3354–3360

    CAS  PubMed  Google Scholar 

  33. Gallagher RE, Li Y-P, Rao S, Paietta E, Andersen J, Etkind P, Tallman MS, Wiernik PH . Characterization of acute promyelocytic leukemia cases with PML-RARα break/fusion sites in PML exon 6: identification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid Blood 1995 86: 1540–1547

    CAS  PubMed  Google Scholar 

  34. Slack JL, Willman CL, Andersen JW, Li Y-P, Viswanatha DS, Bloomfield CD, Tallman MS, Gallagher RE . Molecular analysis and clinical outcome of adult APL patients with the type V PML-RARα isoform: results from Intergroup protocol 0129 Blood 2000 95: 398–403

    CAS  PubMed  Google Scholar 

  35. Gonzalez M, Barragan E, Bolufer P, Chillon C, Colomer D, Borstein R, Calasanz MF, Gomez-Casares MT, Villegas A, Marugan I, Roman J, Martin G, Rayon C, Deben G, Tormo M, Diaz-Mediavilla J, Esteve J, Gonzalez-San Miguel J, Rivas C, Perez-Equiza K, Garcia-Sanz R, Capote FJ, Ribera JM, Arias J, Leon A, Sanz M . Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the PML-RARα isoforms: a study of the PETHEMA group Br J Haematol 2001 114: 99–103

    CAS  PubMed  Google Scholar 

  36. Gu BW, Xiong H, Zhou Y, Chen B, Dong S, Yu ZY, Lu LF, Zhong M, Yin HF, Zhu GF, Huang W, Ren SX, Gallagher RE, Waxman S, Chen GQ, Wang ZG, Chen Z, Chen SJ . G. F. Variant-type PML-RARα fusion transcript in acute promyelocytic leukemia: use of a cryptic coding sequence from intron 2 of the RARα gene and identification of a new clinical subtype of retinoic acid therapy Proc Natl Acad Sci USA 2002 99: 7640–7645

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gurrieri C, Nafa K, Taha M, Jain V, Douer D, Biondi A, Nimer S, Gallagher R, Pandolfi PP . Mutations of the PML tumor suppressor gene in RA-resistant APL Blood 2001 99: 835a

    Google Scholar 

  38. Cassinat B, Chevret S, Zassadowski F, Balitrand N, Guillemot I, Menot M-L, Degos L, Fenaux P, Chomienne C . In vitro all-trans retinoic acid sensitivity of acute promyelocytic leukemia blasts: a novel indicator of poor patient outcome Blood 2001 98: 2862–2864

    CAS  PubMed  Google Scholar 

  39. Lefebvre P, Thomas G, Gourmel B, Agadir A, Castaigne S, Dreux C, Degos L, Chomienne C . Pharmacokinetics of oral all-trans retinoic acid with acute promyelocytic leukemia Leukemia 1991 5: 1054–1058

    CAS  PubMed  Google Scholar 

  40. Rigas J, Francis P, Muindi J, Kris M, Huselton C, DeGrazia F, Orazem J, Young C, Warrell RP Jr . Constitutive variability in the pharmacokinetics of the natural retinoid, all-trans-retinoic acid, and it modulation by ketoconazole J Natl Cancer Inst 1993 85: 1921–1926

    CAS  PubMed  Google Scholar 

  41. Ohno R, Ohnishi K, Takeshita A, Tanimoto M, Murakami H, Kanamaru A, Asou N, Kobayashi T, Kuriyama K, Ohmoto E, Sakamaki H, Tsubaki Kl, Hiraoka A, Yamada O, Oh H, Furusawa S, Matsuda S, Naoe T . All-trans retinoic acid therapy in relapsed/refractory or newly diagnosed acute promyelocytic leukemia (APL) in Japan Leukemia 1994 8: S64–S69

    PubMed  Google Scholar 

  42. Yamada O, Hatake K, Tanimoto M, Ishiyama T, Ohno R, Shirakawa S, Horiuchi A, Tomonaga M, Ota K . Cooperative study of all-trans retinoic acid as a differentiation induction theapy of acute promyelocytic leukemia Jpn J Cancer Chemother 1994 21: 1981–1986

    CAS  Google Scholar 

  43. Thomas X, Dombret H, Cordonnier C, Pigneux A, Gardin C, Guerci A, Vekhoff A, Sadoun A, Stamatoullas A, Fegueux N, Maloisel F, Cahn JY, Reman O, Gratecos N, Berthou C, Huguet F, Kotoucek P, Travade P, Buzyn A, de Revel T, Vilque JP, Naccache P, Chomienne C, Degos L, Fenaux P . Treatment of relapsing acute promyelocytic leukemia by all-trans retinoic acid therapy followed by timed sequential chemotherapy and stem cell transplantation Leukemia 2000 14: 1006–1013

    CAS  PubMed  Google Scholar 

  44. Degos L, Dombret H, Chomienne C, Daniel M-T, Miclea J-M, Chastang C, Castaigne S, Fenaux P . All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia Blood 1995 85: 2643–2653

    CAS  PubMed  Google Scholar 

  45. Lo Coco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM, Biondi A, Rossi G, Carlo-Stella C, Selleri C, Martino B, Specchia G, Mandelli F . Therapy of molecular relapse in acute promyelocytic leukemia Blood 1999 94: 2225–2229

    CAS  PubMed  Google Scholar 

  46. Miller WH Jr, Jakubowski A, Tong WP, Miller VA, Rigas JR, Benedetti F, Gill GM, Truglia JA, Ulm E, Shirley M, Warrell RP Jr . 9-cis retinoic acid induces complete remission but does not reverse clinically acquired retinoid resistance in acute promyelocytic leukema Blood 1995 85: 3021–3027

    CAS  PubMed  Google Scholar 

  47. Estey E, Thall PF, Mehta K, Rosenblum M, Brewer T Jr, Simmons V, Cabanillas F, Kurzrock R, Lopez-Berestein G . Alterations in tretinoin pharmacokinetics following administration of liposomal all-trans retinoic acid Blood 1996 87: 3650–3654

    CAS  PubMed  Google Scholar 

  48. Warrell RP Jr, He LZ, Richon V, Calleja E, Pandolfi PP . Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase J Natl Cancer Inst 1998 90: 1621–1625

    CAS  PubMed  Google Scholar 

  49. Novick S, Camacho L, Gallagher R, Chanel S, Ho R, Tolentino T, Warrell R Jr . Initial clinical evaluation of ‘transcription therapy’ for cancer: all-trans retinoic acid and phenylbutyrate Blood 1999 94: 61a

    Google Scholar 

  50. Zhou D-C, Kim S, Ding W, Schulz C, Warrell RP Jr, Gallagher RE . Frequent mutations in the ligand binding domain of PML-RARα after multiple relapses of actue promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic ancid and histone deacetylase inhibitors in vitro and in vivo Blood 2002 99: 1356–1363

    CAS  PubMed  Google Scholar 

  51. He LZ, Merghoub T, Pandolfi PP . In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications Oncogene 1999 18: 5278–5292

    CAS  PubMed  Google Scholar 

  52. Giguere V . Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signalling Endocrine Rev 1994 15: 61–79

    CAS  Google Scholar 

  53. Luu L, Ramshaw H, Tahayato A, Stuart A, Jones G, White J, Petkovich M . Regulation of retinoic acid metabolism Adv Enzyme Regul 2001 41: 159–175

    CAS  PubMed  Google Scholar 

  54. Muindi J, Frankel S, Miller WH Jr, Jakubowski A, Scheinberg D, Young C, Dmitrovsky E, Warrell RP Jr . Continuous treatment with all-trans-retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid ‘resistance’ in patients with acute promyelocytic leukemia Blood 1992 79: 299–303

    CAS  PubMed  Google Scholar 

  55. Muindi J, Frankel S, Huselton C, DeGrazia F, Garland W, Young C, Warrell RP Jr . Clinical pharmacology of oral all-trans retinoic acid with acute promyelocytic leukemia Cancer Res 1992 52: 2138–2142

    CAS  PubMed  Google Scholar 

  56. Adamson PC, Boylan JF, Balis FM, Murphy RF, Godwin KA, Gudas LJ, Poplack DG . Time course of induction of metabolism of all-trans-retinoic acid and the up-regulation of cellular retinoic acid-binding protein Cancer Res 1993 53: 472–476

    CAS  PubMed  Google Scholar 

  57. Adamson P, Pitot H, Balis F, Rubin J, Murphy R, Poplack D . Variability in the oral bioavailability fo all-trans-retinoic acid J Natl Cancer Inst 1993 85: 993–996

    CAS  PubMed  Google Scholar 

  58. Lee JS, Newman RA, Lippman SM, Fossella FV, Calayag M, Raber MN, Krakoff IH, Hong WK . Phase I evaluation of all-trans retinoic acid with and without ketoconazole in adults with solid tumors J Clin Oncol 1995 13: 1501–1508

    CAS  PubMed  Google Scholar 

  59. Adamson PC, Bailey J, Pluda J, Poplack DG, Bauza S, Murphy RF, Yarchoan R, Balis FM . Pharmacokinetics of all-trans-retinoic acid administered on an intermittent schedule J Clin Oncol 1995 13: 1238–1241

    CAS  PubMed  Google Scholar 

  60. Frolik CA . Metabolism of retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The Retinoids Academic Press: New York 1984 177–208

    Google Scholar 

  61. Nelson DR, Koymans L, Kamataki T, Stegman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW . The P450 superfamily: update on new sequences, gene mapping, accession numbers, and nomenclature Pharmacogenetics 1996 6: 1–42

    CAS  PubMed  Google Scholar 

  62. Martini R, Murray M . Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation Arch Biochem Biophys 1993 303: 57–66

    CAS  PubMed  Google Scholar 

  63. Westin S, Sonneveld E, van der Leede BM, van der Saag PT, Gustafsson JA, Mode A . CYP2C7 expression in rat liver and hepatocytes: regulation by retinoids Mol Cell Endocrinol 1997 129: 169–179

    CAS  PubMed  Google Scholar 

  64. Ray WJ, Bain G, Yao M, Gottlieb DI . CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family J Biol Chem 1997 272: 18702–18708

    CAS  PubMed  Google Scholar 

  65. White JA, Beckett-Jones B, Guo Y-D, Kilworth J, Bonasoro J, Jones G, Petkovich M . cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450 (CYP26) J Biol Chem 1997 272: 18538–18541

    CAS  PubMed  Google Scholar 

  66. Sonneveld E, van den Brink CE, van der Leede B-jM, Schulkes R-KAM, Petkovich M, van der Burg B, van der Saag PT . Human retinoic acid (RA) 4-hydroxylase (CYP26) is highly specific for all-trans-RA and can be induced through RA receptors in human breast and colon carcinoima cells Cell Growth Differ 1998 9: 629–637

    CAS  PubMed  Google Scholar 

  67. Muindi J, Young C . Lipid hydroperoxides greatly increase the rate of oxidative catabolism of all-trans-retinoic acid by human microsomes genetically enriched in specified cytochrome P-450 isoforms Cancer Res 1993 53: 1226–1229

    CAS  PubMed  Google Scholar 

  68. Miller AM, Kobb SM, McTiernan RM . Regulation of HL-60 differentiation by lipoxygenase pathway metabolites in vitro Cancer Res 1990 50: 7257–7260

    CAS  PubMed  Google Scholar 

  69. Miller VA, Rigas JR, Muindi JRF, Tong WP, Venkatraman E, Kris MG, Warrell RP Jr . Modulation of all-trans retinoic acid pharmacokinetics by liarozole Cancer Chemother Pharmacol 1994 34: 522–526

    CAS  PubMed  Google Scholar 

  70. Schwartz E, Hallam S, Gallagher R, Wiernik P . Inhibition of all-trans-retinoic acid metabolism by fluconazole in vitro and in patients with acute promyelocytic leukemia Biochem Pharmacol 1995 50: 923–928

    CAS  PubMed  Google Scholar 

  71. Capdevila J, Gil L, Orellana M . Inhibitors of cytochrome P-450-dependent arachidonic acid metabolism Arch Biochem Biophys 1988 261: 257–263

    CAS  PubMed  Google Scholar 

  72. Ruberte E, Friederic B, Morriss-Kay G, Chambon P . Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis Development 1992 115: 973–987

    CAS  PubMed  Google Scholar 

  73. Boylan J, Gudas L . The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolism in F9 teratocarcinoma stem cells J Biol Chem 1992 267: 21486–21491

    CAS  PubMed  Google Scholar 

  74. Napoli J . Retinoic acid biosynthesis and metabolism FASEB J 1996 10: 993–1001

    CAS  PubMed  Google Scholar 

  75. Donovan M, Olofsson B, Gustafson AL, Dencker L, Eriksson U . The cellular retinoic acid binding proteins J Steroid Biochem Mol Biol 1995 43: 459–465

    Google Scholar 

  76. Means AL, Thompson JR, Gudas LJ . Transcriptional regulation of the cellular retinoic acid binding protein I gene in F9 teratocarcinoma cells Cell Growth Differ 2000 11: 71–82

    CAS  PubMed  Google Scholar 

  77. Piletta P, Jaconi S, Siegenthaler G, Didierjean L, Saurat JH . Topical glucocorticosteroids modulate the expression of CRABP I and II in human skin differently Exp Dermatol 1994 3: 23–28

    CAS  PubMed  Google Scholar 

  78. Durand B, Saunders M, Leroy P, Leid M, Chambon P . All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs Cell 1992 71: 73–85

    CAS  PubMed  Google Scholar 

  79. Astrom A, Pettersson U, Chambon P, Voorhees J . Retinoic acid induction of human cellular retinoic acid-binding protein-II gene transcription is mediated by retinoic acid receptor-retinoid X receptor heterodimers bound to one far upstream retinoic acid-responsive element with 5-base pair spacing J Biol Chem 1994 269: 22334–22339

    CAS  PubMed  Google Scholar 

  80. Jing Y, Waxman S, Mira-y-Lopez R . The cellular retinoic acid binding protein II is a positive regulator of retinoic acid signaling in breast cancer cells Cancer Res 1997 57: 1668–1672

    CAS  PubMed  Google Scholar 

  81. Vo HP, Crowe DL . Transcriptional regulation of retinoic acid responsive genes by cellular retinoic acid binding protein-II modulates RA-mediated tumor cell proliferation and invasion Anticancer Res 1998 18: 217–224

    CAS  PubMed  Google Scholar 

  82. Delva L, Bastie J-N, Rochette-Egly C, Kraiba R, Balitrand N, Despauy G, Chambon P, Chomienne C . Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex Mol Cel Biol 1999 19: 7158–7167

    CAS  Google Scholar 

  83. Dong D, Ruuska SE, Levinthal DJ, Noy N . Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid J Biol Chem 1999 274: 23695–23698

    CAS  PubMed  Google Scholar 

  84. Budhu A, Gillilan R, Noy N . Localization of the RAR interaction domain of cellular retinoic acid binding protein-II J Mol Biol 2001 305: 939–949

    CAS  PubMed  Google Scholar 

  85. Bastie J-N, Despouy G, Balitrand N, Rochette-Egly C, Chomienne C, Delva L . The novel co-activator CRABPII binds to RARα and RXRα via two nuclear receptor interacting domains and does not required the AF-2 ’core’ FEBS Lett 2001 507: 67–73

    CAS  PubMed  Google Scholar 

  86. Gaub MP, Lutz Y, Ghyselinck NB, Scheuer I, Pfister V, Chambon P, Rochette-Egley C . Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies J Histochem Cytochem 1998 46: 1103–1111

    CAS  PubMed  Google Scholar 

  87. Zheng WL, Sierra-Rivera E, Luan J, Ostgeen KG, Ong DE . Retinoic acid synthesis and expression of cellular retinol-binding protein and cellular retinoic acid-binding protein type II are concurrent with decidualization of rat uterine stromal cells Endocrinol 2000 141: 802–808

    CAS  Google Scholar 

  88. Warrell R Jr . Retinoid resistance Lancet 1993 341: 126

    PubMed  Google Scholar 

  89. Astrom A, Tavakkol A, Pettersson U, Cromie M, Elder J, Voorhees J . Molecular cloning of two human cellular retinoic acid-binding proteins (CRABP) J Biol Chem 1991 266: 17662–17666

    CAS  PubMed  Google Scholar 

  90. Cornic M, Delva L, Guidez F, Balitrand N, Degos L, Chomienne C . Induction of retinoic acid-binding protein in normal and malignant human myeloid cells by retinoic acid in acute promyelocytic leukemia patients Cancer Res 1992 52: 3329–3334

    CAS  PubMed  Google Scholar 

  91. Delva L, Cornic M, Balitrand N, Guidez F, Miclea J-M, Delmer A, Teillet F, Fenaux P, Castaigne S, Degos L, Chomienne C . Resistance to all-trans-retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro sensitivity and cellular retinoic acid binding protein levels in leukemic cells Blood 1993 82: 2175–2181

    CAS  PubMed  Google Scholar 

  92. Zhou D-C, Hallam SJ, Klein RS, Wiernik PH, Tallman MS, Gallagher RE . Constitutive expression of cellular retinoic acid binding protein II and lack of correlation with sensitivity to all-trans retinoic acid in acute promyelocytic leukemia cells Cancer Res 1998 58: 5770–5776

    CAS  PubMed  Google Scholar 

  93. Soignet SL, Benedetti F, Fleishauer A, Parker BA, Truglia JA, Ra Crisp M, Warrell RP Jr . Clinical study of 9-cis retinoic acid (LGD1057) in acute promyelocytic leukemia Leukemia 1998 12: 1518–1521

    CAS  PubMed  Google Scholar 

  94. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C . 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor Cell 1992 68: 397–406

    CAS  PubMed  Google Scholar 

  95. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen CI, Rosenberger M, Lovey A, Grippo JF . 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα Nature 1992 355: 359–361

    CAS  PubMed  Google Scholar 

  96. Adamson PC, Murphy RF, Godwin KA, Ulm EH, Balis FM . Pharmacokinetics of 9-cis retinoic acid in the rhesus monkey Cancer Res 1995 55: 482–485

    CAS  PubMed  Google Scholar 

  97. Adamson PC, Widemann BC, Reaman GH, Seibel NI, Murphy RF, Gillespie AF, Balis FM . A phase I trial and pharmacokinetic study of 9-cis-retinoic acid (ALRT1057) in pediatric patients with refractory cancer: a joint Pediatric Oncology Branch, National Cancer Institute, and Childrens's Cancer Group study J Clin Oncol 2001 7: 3034–3039

    CAS  Google Scholar 

  98. Allenby G, Bocquel MT, Saunders M, Kazmer S, Speck J, Rosenberger M, Lovey A, Kastner P, Grippo JF, Chambon P, Levin A . Retinoic acid receptors and retinoid X receptors:interactions with endogenous retinoic acids Proc Natl Acad Sci USA 1993 90: 30–34

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fiorella P, Giguere V, Napoli J . Expression of cellular retinoic acid-binding protein (type II) in Escherichia coli: characterization and comparison to cellular binding retinoic acid binding protein (type I) J Biol Chem 1993 268: 21545–21552

    CAS  PubMed  Google Scholar 

  100. Tobita T, Takeshita A, Kitamura K, Ohnishi K, Yanagi M, Hiraoka A, Karasuno T, Takeuchi M, Miyawaki S, Ueda R, Naoe T, Ohno R . Treatment with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid Blood 1997 90: 967–973

    CAS  PubMed  Google Scholar 

  101. Shinjo K, Takeshita A, Ohnishik K, Sakura T, Miyawaki S, Hiraoka A, Takeuchi M, Tomoyasu S, Wakita H, Ata K, Fukutani H, Ueda R, Ohno R . Good prognosis of patients with acute promyelocytic leukemia who achieved second complete remission (CR) with a new retinoid, Am80, after relapse from CR induced all-trans-retinoic acid Int J Hematol 2000 72: 470–473

    CAS  PubMed  Google Scholar 

  102. Lopez-Berestein G . Pharmacokinetics, tissue diestribution, and toxicology of tretinoin incorporated in liposomes J Lipid Res 1994 4: 689–700

    Google Scholar 

  103. Drach J, Lopez-Berestein G, McQueen T, Andreeff M, Mehta K . Induction of differentiation in myeloid leukemia cell lines and acute promyelocytic leukemia cells by liposomal all-trans-retinoic acid Cancer Res 1993 53: 2100–2104

    CAS  PubMed  Google Scholar 

  104. Imaizumi M, Breitman TR . Retinoic acid induced differentiation of the human promyelocytic leukemia cell line, HL-60, and fresh human leukemia cells in primary culture: a model for differentiation inducing therapy Eur J Haematol 1987 38: 289–302

    CAS  PubMed  Google Scholar 

  105. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos L . All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure–function relationship Blood 1990 76: 1710–1717

    CAS  PubMed  Google Scholar 

  106. Ruchaud S, Duprez E, Gendron MD, Houge G, Genieser HG, Jastorff B, Doskeland SO, Lanotte M . Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line Proc Natl Acad Sci USA 1994 91: 8428–8432

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chambon P . A decade of molecular biology of retinoic acid receptors FASEB J 1996 10: 940–954

    CAS  PubMed  Google Scholar 

  108. Agadir A, Cornic M, Lefebvre P, Gourmel B, Balitrand N, Degos L, Chomienne C . Differential uptake of all-trans-retinoic acid by acute promyelocytic leukemic cells: evidence for its role in retinoic acid efficacy Leukemia 1995 9: 139–145

    CAS  PubMed  Google Scholar 

  109. Agadir A, Cornic M, Lefebvre P, Gourmel B, Jerome M, Degos L, Fenaux P, Chomienne C . All-trans-retinoic acid pharmacokinetics and bioavailability in acute promyelocytic leukemia: intracellular concentrations and biologic response relationship J Clin Oncol 1995 13: 2517–2523

    CAS  PubMed  Google Scholar 

  110. Takeshita A, Shinjo K, Naito K, Ohnishi K, Sugimoto Y, Tanimoto M, Kitamura K, Naoe T, Ohno R . Role of P-glycoprotein (P-gp) in all-trans retinoic acid (ATRA) resistance in acute promyleocytic leukaemia cells: analysis of intracellular concentration of ATRA Br J Haematol 2000 108: 90–92

    CAS  PubMed  Google Scholar 

  111. Takeshita A, Shigeno K, Shinjo K, Naito K, Ohnishi K, Hahyashi H, Tanimoto M, Ohno R . All-trans retinoic acid (ATRA) differentiates acute promyelocytic leukemia cells independently of P-glycoprotein (P-gp) related drug resistance Leuk Lymphoma 2001 42: 739–746

    CAS  PubMed  Google Scholar 

  112. Gallagher R, de Cuevillas F, Chang C-S, Schwartz E . Variable regulation of sensitivity to retinoic acid-induced differentiation in wild-type and retinoic acid-resistant HL-60 cells Cancer Commun 1989 1: 45–54

    CAS  PubMed  Google Scholar 

  113. Qian YM, Song WC, Cui H, Cole SP, Deeley RG . Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1 J Biol Chem 2001 276: 6404–6411

    CAS  PubMed  Google Scholar 

  114. Zhou DC, Zittoun R, Marie JP . Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia Leukemia 1995 9: 1661–1666

    CAS  PubMed  Google Scholar 

  115. Willman CL . The prognostic significance of the expression and function of the multidrug resistance transporter proteins in acute myeloid leukemia: studies of the Southwest Oncology Leukemia Research Program Semin Hematol 1997 34: 25–33

    CAS  PubMed  Google Scholar 

  116. Paietta E, Andersen J, Racevskis J, Gallagher R, Bennett J, Yunis J, Cassileth P, Wiernik P . Significantly lower P-glycoprotein expression in acute promyelocytic leukemia than in other types of acute myeloid leukemia: immunological, molecular and functional analyses Leukemia 1994 8: 968–973

    CAS  PubMed  Google Scholar 

  117. Drach D, Zhao S, Drach J, Andreeff M . Low incidence of MDR1 expression in acute promyelocytic leukaemia Br J Haematol 1995 90: 369–374

    CAS  PubMed  Google Scholar 

  118. Kizaki M, Hironori U, Yamazoe Y, Shimada M, Takayama N, Muto A, Matsushita H, Nakajima H, Morikawa M, Koeffler HP, Ikeda Y . Mechanisms of retinoid resistance in leukemic cells: possible role of cytochrome P450 and P-glycoprotein Blood 1996 87: 725–733

    CAS  PubMed  Google Scholar 

  119. Michieli M, Damiani D, Ermacora A, Geromin A, Michelutti A, Masolini P, Baccarani M . P-glycoprotein (PGP), lunge resistance-related protein (LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukemia Br J Haematol 2000 108: 703–709

    CAS  PubMed  Google Scholar 

  120. Matsushita H, Kizaki M, Kobayashi H, Ueno H, Muto A, Takayama N, Awaya N, Kinjo K, Hattori Y, Ikeda Y . Restoration of retinoid sensitivity by MDR1 ribozymes in retinoic acid-resistant myeloid leukemic cells Blood 1998 91: 2452–2458

    CAS  PubMed  Google Scholar 

  121. Gallagher RE, De Luca LM . Membrane events regulating differentiation in response to lipophilic inducing agents: therapeutic implications In: Waxman S, Rossi G, Takaku F (eds) The Status of Differentiation Therapy of Cancer Raven Press: New York 1991 pp 143–157

    Google Scholar 

  122. Napoli JL . Retinoic acid: its biosynthesis and metabolism Prog Nucleic Acid Res Mol Biol 1999 63: 139–188

    CAS  PubMed  Google Scholar 

  123. Idres N, Benoit G, Flexor MA, Lanotte M, Chabot GG . Granulocytic differentiation of human NB4 promyelocytic leukemia cells induced by all-trans retinoic acid metabolites Blood 2001 61: 700–705

    CAS  Google Scholar 

  124. Takatsuka J, Takahashi N, De Luca LM . Retinoic acid metabolism and inhibition of cell proliferation: an unexpected liason Cancer Res 1996 56: 675–678

    CAS  PubMed  Google Scholar 

  125. van der Leede BM, van den Brink CE, Pijnappel WW, Sonneveld E, van der Saag PT, van der Burg B . Autoinduction of retinoic acid metabolism to polar derivatives with decreased biological activity in retinoic acid-sensitive but not in retinoic acid-resistant human breast cancer cells J Biol Chem 1997 272: 17921–17928

    CAS  PubMed  Google Scholar 

  126. Lampron C, Rochette-Egly C, Gorry P, Dollé P, Mark M, Lufkin T, LeMeur M, Chambon P . Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal Development 1995 121: 539–548

    CAS  PubMed  Google Scholar 

  127. Kuersten S, Ohno M, Mattaj IW . Nucleocytoplasmic transport: ran, beta and beyond Trends Cell Biol 2001 11: 497–503

    CAS  PubMed  Google Scholar 

  128. Macara IG . Transport into and out of the nucleus Microbiol Mol Biol Rev 2001 65: 570–594

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P . PMLRAR homodimers: distinct DNA binding properties and heterodimeric interactions with RXR EMBO J 1993 12: 3171–3182

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C, Pelicci PG . Oligomerization of RAR and AML1 transcriprition factors as a novel mechanism of oncogenic activation Mol Cell 2000 5: 811–820

    CAS  PubMed  Google Scholar 

  131. Lin RJ, Evans RM . Acquistion of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers Mol Cell 2000 5: 821–830

    CAS  PubMed  Google Scholar 

  132. Collingwood TN, Urnov FD, Wolffe AP . Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription J Mol Endocrinol 1999 23: 255–275

    CAS  PubMed  Google Scholar 

  133. McKenna NJ, Lanz RB, O'Malley BW . Nuclear receptor coregulators: cellular and molecular biology Endocrine Rev 1999 20: 321–344

    CAS  Google Scholar 

  134. Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG . Molecular determinants of nuclear receptor-corepressor interaction Genes Dev 1999 13: 3198–3208

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Westin S, Rosenfeld MG, Glass CK . Nuclear receptor coactivators Adv Pharmacol 2000 47: 89–112

    CAS  PubMed  Google Scholar 

  136. Strahl BD, Allis CD . The language of covalent histone modification Nature 1998 403: 41–45

    Google Scholar 

  137. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun Z-W, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Henuwein T . Regulation of chromatin structure by site-specific histone H3 methyltransferases Nature 2000 406: 593–599

    CAS  PubMed  Google Scholar 

  138. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM . A transcriptional switch mediated by cofactor methylation Science 2001 294: 2507–2511

    CAS  PubMed  Google Scholar 

  139. Freedman LP . Increasing the complexity of coactivation in nuclear receptor signalling Cell 1999 97: 5–8

    CAS  PubMed  Google Scholar 

  140. Cairns BR . Chromatin remodeling machines: similar motors, ulterior motives Trends Biochem Sci 1998 23: 20–25

    CAS  PubMed  Google Scholar 

  141. Lemon B, Inouye C, King DS, Tjian R . Selectivity of chromatin-remodeling cofactors for ligand-activated transcription Nature 2001 414: 924–928

    CAS  PubMed  Google Scholar 

  142. Shao W, Rosenauer A, Mann K, Chang C-PB, Rachez C, Freedman LP, Miller WH Jr . Ligand-inducible interaction of the DRIP/TRAP coactivator complex with retinoid receptors in retinoic acid-sensitive and -resistant acute promyelocytic leukemia cells Blood 2000 96: 2233–2239

    CAS  PubMed  Google Scholar 

  143. Coignet LJ, Song L, Zlobin A, Brigaudeau C, Weijsen S, Jiang Q, Nacheva E, Davis E, Catovsky D, Grogan T, Staudt L, Fisher RI, Miele L . Alteration of SMRT tumor suppressor function in transformed non-Hodgkin lymphoma Blood 2001 98: 3164a

    Google Scholar 

  144. Carapeti M, Aguiar RCT, Goldman JM, Cross NCP . A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia Blood 1998 91: 3127–3133

    CAS  PubMed  Google Scholar 

  145. Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S, Schneider NR, Barredo JD, Cantu ES, Schlegelberger B, Behm F, Doggett NA, Borrow J, Zelznik-Le N . All patients with the t(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders Blood 1997 90: 535–541

    CAS  PubMed  Google Scholar 

  146. Johnson BS, Chandraratna RAS, Heyman RA, Allegretto EA, Mueller L, Collins SJ . Retinoid X receptor (RXR) agonist-induced activation of dominant-negative RXR-retinoic acid receptor α403 heterodimers is developmentally regulated during myeloid differentiation Mol Cel Biol 1999 19: 3372–3382

    CAS  Google Scholar 

  147. Johnson BS, Mueller L, Li J, Collins SJ . The cytokines IL-3 and GM-CSF regulate the transcriptional activity of retinoic acid receptors in different in vitro models of myeloid differentiation Blood 2002 99: 746–753

    CAS  PubMed  Google Scholar 

  148. Lanotte M, Martin-Thouvenin B, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3) Blood 1991 77: 1080–1086

    CAS  PubMed  Google Scholar 

  149. Breitman TR, Collins SJ, Keene BR . Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid Blood 1981 57: 1000–1004

    CAS  PubMed  Google Scholar 

  150. Duprez E, Ruchaud S, Houge G, Martin-Thouvenin V, Valensi F, Kastner P, Berger R, Lanotte M . A retinoid acid ’resistant’ t(15:17) acute promyelocytic leukemia cell line: isolation, morphological, immunological, and molecular features Leukemia 1992 6: 1281–1287

    CAS  PubMed  Google Scholar 

  151. Roussel MJS, Lanotte M . Maturation sensitive and resistant t(15;17) NB4 cell lines as tools for APL physiopathology: nomenclature of cells and repertory of their known genetic alterations and phenotypes Oncogene 2001 20: 7287–7291

    CAS  PubMed  Google Scholar 

  152. Duprez E, Lillehaug JR, Gaub MP, Lanotte M . Differential changes of retinoid-X-receptor (RXRα) and its RARα and PML-RARα partners induced by retinoic acid and cAMP distinguish maturation sensitive and resistant t(15;17) promyelocytic leukemia NB4 cells Oncogene 1996 12: 2443–2450

    CAS  PubMed  Google Scholar 

  153. Bruel A, Benoit G, De Nay D, Brown S, Lanotte M . Distinct apoptotic responses in maturation sensitive and resistant t(15;17) acute promyelocytic leukemia NB4 cells. 9-cis retinoic acid induces apoptosis independent of maturation and Bcl-2 expression Leukemia 1995 9: 1173–1184

    CAS  PubMed  Google Scholar 

  154. Pendino F, Flexor M, Delhommeau F, Buet D, Lanotte M, Segal-Bendirdjian E . Retinoids down-regulate telomerase and telomere length in a pathway distinct from leukemia cell differentiation Proc Natl Acad Sci USA 2001 98: 6662–6667

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Benoit G, Altucci L, Flexor M, Ruchaud S, Lillehaug J, Raffelsberger W, Gronemeyer H, Lanotte M . RAR-independent RXR signaling induces t(15;17) leukemia cell maturation EMBO J 1999 18: 7011–7018

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Benoit G, Roussel M, Pendino F, Segal-Bendirdjian E, Lanotte M . Orchestration of multiple arrays of signal cross-talk and combinatorial interactions for maturation and cell death: another vision of t(15;17) preleukemic blast and APL-cell maturation Oncogene 2001 20: 7161–7177

    CAS  PubMed  Google Scholar 

  157. Shao W, Benedetti L, Lamph WW, Nervi C, Miller WH Jr . A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML-RARα mutation Blood 1997 89: 4282–4289

    CAS  PubMed  Google Scholar 

  158. Kitamura K, Kiyoi H, Yoshida H, Saito H, Ohno R, Naoe T . Mutant AF-2 domain of PML-RARα in retinoic acid-resistant NB4 cells: differentiation induce by RA is triggered directly through PML-RARα and its down-reguation in acute promyelocytic leukemia Leukemia 1997 11: 1950–1956

    CAS  PubMed  Google Scholar 

  159. Nason-Burchenal K, Allopenna J, Bégue A, Stéhelin D, Dmitrovsky E, Martin P . Targeting of PML/RARα is lethal to retinoic acid-resistant promyelocytic leukemia cells Blood 1998 92: 1758–1767

    CAS  PubMed  Google Scholar 

  160. Duprez E, Benoit G, Flexor M, Lillehaug JR, Lanotte M . A mutated PML/RARA found in the retinoid maturation-resistant NB4 subclone, NB4-R2, block RARA and wild-type PML/RARα transcriptional activities Leukemia 2000 14: 255–261

    CAS  PubMed  Google Scholar 

  161. Giguere V, Ong ES, Segui P, Evans RM . Identification of a receptor for the morphogen retinoic acid Nature 1987 330: 624–629

    CAS  PubMed  Google Scholar 

  162. Rosenauer A, Raelson JV, Nervi C, Eydoux P, DeBlasio A, Miller WH Jr . Alteration in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines Blood 1996 88: 2671–2682

    CAS  PubMed  Google Scholar 

  163. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukemia Nature 1998 391: 811–814

    CAS  PubMed  Google Scholar 

  164. Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M, Pelicci PG, Miller WH Jr . The PML/RARα oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells Blood 1996 88: 2826–2832

    CAS  PubMed  Google Scholar 

  165. Benoit GR, Flexor M, Besancon F, Altucci L, Rossin A, Hillion J, Balajthy Z, Legrest L, Segal-Bendirdjian E, Gronemeyer H, Lanotte M . Autonomous rexinoid death signaling is suppressed by converging pathways in immature leukemia cells Mol Endocrinol 2001 15: 1154–1169

    CAS  PubMed  Google Scholar 

  166. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H . Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL Nat Med 2001 6: 680–686

    Google Scholar 

  167. Guidez F, Altucci L, Xu K, Rossin A, Wilhelm E, Culligan DJ, Solomon E, Gronemeyer H, Zelent A, Grimwade D . Rexinoid therapy bypasses the differentiation block associated with acute promyelocytic leukemia harboring the PLZF/RARα rearrangement Blood 2001 98: 766a

    Google Scholar 

  168. Robertson K, Emami B, Collins S . Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity Blood 1992 80: 1885–1888

    CAS  PubMed  Google Scholar 

  169. Li Y-P, Said F, Gallagher R . Retinoic acid-resistant HL-60 cells exclusively contain mutant retinoic acid receptor-alpha Blood 1994 83: 3298–3302

    CAS  PubMed  Google Scholar 

  170. Collins SC, Robertson KA, Mueller L . Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-α) Mol Cel Biol 1990 10: 2134–2163

    Google Scholar 

  171. Brigati C, Nobile L, Fugazza G, Zohouri M, Gallagher R, Cannizzaro L . A unique carboxy-terminus truncation mutant of the retinoic acid receptor alpha gene associated wtih a variant marker chromosome in a retinoic acid resistant HL-60 subline Leukemia Res 1999 23: 105–113

    CAS  Google Scholar 

  172. Zhang H-S, Gallagher R . Reduced retinoic acid binding to nuclear receptors and association with a high molecular weight complex in retinoic acid resistant HL-60 cells Proc Am Assoc Cancer Res 1993 34: 20

    Google Scholar 

  173. Grillier I, Umiel T, Elstner E, Collins SJ, Koeffler HP . Alterations of differentiation, clonal proliferation, cell cycle progression and bcl-2 expression in RARα-altered sublines of HL-60 Leukemia 1997 11: 393–400

    CAS  PubMed  Google Scholar 

  174. Onodera M, Kunisada T, Nishikawa S, Sakiyama Y, Matsumoto S, Nishikawa S . Overexpression of retinoic acid receptor alpha suppresses myeloid cell differentiation at the promyelocyte stage Oncogene 1995 11: 1291–1298

    CAS  PubMed  Google Scholar 

  175. Kastner P, Chan S . Function of RARα during the maturation of neutrophils Oncogene 2001 20: 7178–7185

    CAS  PubMed  Google Scholar 

  176. Dermime B, Grignani F, Clerici M, Nervi C, Sozzi G, Talamo G, Marchesi E, Formelli F, Parmiani G, Pelicci P, Gambacorti-Passerini C . Occurrence of resistance to retinoic acid in the acute promyelocytic cell line NB4 is associated with altered expression of the pml/RARα protein Blood 1993 82: 1573–1577

    CAS  PubMed  Google Scholar 

  177. Dermime S, Grignani F, Rogaia D, Liberatore C, Marchesi E, Gambacorti-Passerini C . Acute promyelocytic leukemia cells resistant to retinoic acid show further perturbation of the RARα signal transduction system Leuk Lymphoma 1995 16: 289–295

    CAS  PubMed  Google Scholar 

  178. Fanelli M, Minucci S, Gelmetti V, Nervi C, Gambacorti-Passerini C, Pelicci PG . Constitutive degradation of PML/RARα through the proteasome pathway mediates retinoic acid resistance Blood 1999 93: 1477–1481

    CAS  PubMed  Google Scholar 

  179. Kizaki M, Matsushita H, Takayama N, Muto A, Ueno H, Awaya N, Kawai Y, Asou H, Kamada N, Ikeda Y . Establishment and characterization of a novel acute promyelocytic leukemia cell line (UF-1) with retinoic acid-resistant features Blood 1996 88: 1824–1833

    CAS  PubMed  Google Scholar 

  180. Takayama N, Kizaki M, Hida T, Kinjo K, Ikeda Y . Novel mutation in the PML/RARalpha chimeric gene exhibits dramatically decreased ligand-binding activity and confers acquired resistance to retinoic acid in acute promyelocytic leukemia Exp Hematol 1998 29: 864–872

    Google Scholar 

  181. Kim SH, Ding W, Cannizzaro L, Zohouri M, Gebhard D, Paietta E, Warrell RP Jr, Gallagher RE . Cell line AP-1060 with novel phenotypic and genotypic features established from acute promyelocytic leukemia (APL) patient clinically-resistant to all-trans retinoic acid (RA) and arsenic trioxide (ATO) Blood 1998 92: 609a

    Google Scholar 

  182. Sun Y, Kim SH, Ramesh KH, Cannizzaro L, Paietta E, Warrell RP Jr, Gallagher RE . Immortalization of acute promyelocytic leukemia (APL) cell culture AP-1060 associated with altered growth factor response Blood 2001 99: 173b

    Google Scholar 

  183. Morosetti R, Grignani F, Liberatore C, Pelicci PG, Schiller GJ, Kizaki M, Bartram CR, Miller CW, Koeffler HP . Infrequent alterations of the RARα gene in acute myelogenous leukemias, retinoic acid-resistant acute promyelocytic leukemias, myelodysplastic syndromes, and cell lines Blood 1996 87: 4399–4403

    CAS  PubMed  Google Scholar 

  184. Imaizumi M, Suzuki H, Yoshinari M, Sato A, Saito T, Sugawara A, Tsuchiya S, Hatae Y, Fujimoto T, Kakizuka A, Konno T, Iinuma K . Mutations in the E-domain of RARα portion of the PML/RARα chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia Blood 1998 92: 374–382

    CAS  PubMed  Google Scholar 

  185. Marasca R, Zucchini P, Galimberti S, Leonardi G, Vaccari P, Donelli A, Luppi M, Petrini M, Torelli G . Missense mutations in the PML/RARα ligand binding domain in ATRA-resistant AS2O3 sensitive relapse acute promyelocytic leukemia Haematologica 1999 84: 963–968

    CAS  PubMed  Google Scholar 

  186. Gallagher R, Ding W, Kim S, Schachter E, Bi W, Livak K, Slack J, Willman C . Late-emerging PML-RARα mutant subclones in relapse acute promyelocytic leukemia (APL): a protocol INT0129 laboratory study Blood 2001 98: 718a

    Google Scholar 

  187. Cote S, Zhou D, Bianchini A, Nervi C, Gallagher RE, Miller WH Jr . Altered ligand binding and transcriptional regulation by mutations in the PML/RARα ligand-binding domain arising in retinoic acid-resistant patients with acute promyelocytic leukemia Blood 2000 96: 3200–3208

    CAS  PubMed  Google Scholar 

  188. Kopp P, Kitajima K, Jameson JL . Syndrome of resistance to thyroid hormone: insights into thyroid hormone action Proc Soc Exp Biol Med 1996 211: 49–61

    CAS  PubMed  Google Scholar 

  189. Schroeder C, Gibson L, Zenke M, Beug H . Modulation of normal erythroid differentiation by the endogenous thyroid hormone and retinoic acid receptors: a possible target for v-erbA oncogene action Oncogene 1992 7: 217–227

    CAS  PubMed  Google Scholar 

  190. Graf T . Leukemia as a multistep process: studies with avian retroviruses containing two oncogenes Leukemia 1988 2: 127–131

    CAS  PubMed  Google Scholar 

  191. Damm K, Thompson C, Evans R . Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist Nature 1989 339: 593–597

    CAS  PubMed  Google Scholar 

  192. Privalsky ML, Yoh SM . Resistance to thyroid hormone (RTH) syndrome reveals novel determinants regulating interaction of T3 receptor with corepressor Mol Cell Endocrinol 2000 159: 109–124

    CAS  PubMed  Google Scholar 

  193. Grossmann ME, Huang H, Tindall DJ . Androgen receptor signalling in androgen-refractory prostate cancer J Natl Cancer Inst 2001 93: 1687–1697

    CAS  PubMed  Google Scholar 

  194. Shi X-B, Ma A-H, Xia L, Kung H-J, de Vere White RW . Functional analysis of 44 mutant androgen receptors from human prostate cancer Cancer Res 2002 62: 1496–1502

    CAS  PubMed  Google Scholar 

  195. Di Croce L, Raker VA, Corsaro M, Faxi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG . Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor Science 2002 295: 1079–1082

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr Ari Melnick for careful reading of the manuscript and for suggestions, and to Dr Dan Douer and Dr Ryuzo Ohno for reviewing and clarifying their published data. This work was supported by USPHS Grant CA56771.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, R. Retinoic acid resistance in acute promyelocytic leukemia. Leukemia 16, 1940–1958 (2002). https://doi.org/10.1038/sj.leu.2402719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402719

Keywords

This article is cited by

Search

Quick links