Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications

Abstract

Increased angiogenesis has recently been recognized in active multiple myeloma (MM). Since vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are two key mediators of angiogenesis, we characterized the production of VEGF, b-FGF and interleukin-6 (IL-6) (a MM growth and survival factor) in MM cell lines and Epstein–Barr virus (EBV) transformed B cell lines from MM patients, patient MM cells, as well as bone marrow stromal cells (BMSCs) from normal healthy donors and MM patients. We detected secretion of VEGF, but no bFGF and IL-6, in MM cell lines (MM.1S, RPMI 8226 and U266); EBV transformed B cell lines from MM patients (IM-9, HS-Sultan and ARH77); MM cell lines resistant to doxorubicin (RPMI-DOX40), mitoxantrone (RPMI-MR20), melphalan (RPMI-LR5) and dexamethasone (MM.1R); and patient MM cells (MM1 and MM2). BMSCs from MM patients and normal donors secreted VEGF, b-FGF and IL-6. Importantly, when MM cells were adhered to BMSCs, there was a significant increase in VEGF (1.5- to 3.1-fold) and IL-6 (1.9- to 56-fold) secretion. In contrast, the bFGF decreased in co-cultures of BMSCs and MM cells. Paraformaldehyde fixation of BMSCs or MM cells prior to adhesion revealed that VEGF was produced both from BMSCs and MM cells, though it may come primarily from BMSCs in some cultures. IL-6 was produced exclusively in BMSCs, rather than MM cells. Moreover, when MM cells were placed in Transwell insert chambers to allow their juxtaposition to BMSCs without cell to cell contact, induction of VEGF and IL-6 secretion persisted, suggesting the importance of humoral factors. Addition of exogenous IL-6 (10 ng/ml) increased VEGF secretion by BMSCs. Conversely, VEGF (100 ng/ml) significantly increased IL-6 secretion by BMSCs. Moreover, anti-human VEGF (1 μg/ml) and anti-human IL-6 (10 μg/ml) neutralizing antibodies reduced IL-6 and VEGF secretion, respectively, in cultures of BMSCs alone and co-cultures of BMSCs and MM cells. Finally, thalidomide (100 μM) and its immunomodulatory analog IMiD1-CC4047 (1 μM) decreased the upregulation of IL-6 and VEGF secretion in cultures of BMSCs, MM cells and co-cultures of BMSCs with MM cells. These data demonstrate the importance of stromal–MM cell interactions in regulating VEGF and IL-6 secretion, and suggest additional mechanisms whereby thalidomide and IMiD1-CC4047 act against MM cells in the BM millieu.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA . Cancer statistics, 2000 CA Cancer J Clin 2000 501: 7–33

    Article  Google Scholar 

  2. Anderson KC, Jones RM, Morimoto C, Laevitt P, Barut BA . Response pattern of purified myeloma cells to hematopoietic growth factors Blood 1989 73: 1915–1924

    CAS  PubMed  Google Scholar 

  3. Klein B, Zhang XG, Jourdan M, Content J, Houssiau F, Aarden L, Piechaczyk M, Bataille R . Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6 Blood 1989 73: 517–526

    CAS  PubMed  Google Scholar 

  4. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H . Autocrine generation and essential requirement of BSF-2/IL-6 for human multiple myeloma Nature 1988 332: 83–85

    Article  CAS  Google Scholar 

  5. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC . Adhesion of human myeloma derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion Blood 1993 82: 3712- 3720

    Google Scholar 

  6. Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL, Anderson KC . Interleukin-6 triggers cell growth via the ras-dependent mitogen-activated protein kinase cascade J Immunol 1997 159: 2212–2221

    CAS  PubMed  Google Scholar 

  7. Chauhan D, Kahrbanda S, Ogata A, Urashima M, Teoh G, Robertson M, Kufe DW, Anderson KC . Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells Blood 1997 89: 227–234

    CAS  PubMed  Google Scholar 

  8. Bataille R, Jourdan M, Zhang XG, Klein B . Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias J Clin Invest 1989 84: 2008–2011

    Article  CAS  Google Scholar 

  9. Klein B, Zhang XG, Lu ZY, Bataille R . Interleukin-6 in human multiple myeloma Blood 1995 85: 863–872

    CAS  PubMed  Google Scholar 

  10. Hallek M, Bergsagel PL, Anderson KC . Multiple myeloma: increasing evidence for a multistep transformation process Blood 1998 91: 3–21

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Folkman J . Clinical applications of research on angiogenesis N Engl J Med 1995 333: 1757–1763

    Article  CAS  Google Scholar 

  12. Weidner N, Semple JP, Welch WR, Folkman J . Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma N Engl J Med 1991 324: 1–8

    Article  CAS  Google Scholar 

  13. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J . Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma Am J Pathol 1993 143: 401–409

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Giatromanlaki A, Koukourakis M, O'Byrne K, Fox S, Whitehouse R, Talbot DC, Harris AL, Gatter KC . Prognostic value of angiogenesis in operable non-small cell lung cancer J Pathol 1996 179: 80–88

    Article  Google Scholar 

  15. Meiter D, Crawford SE, Rademaker AW, Cohen S . Tumor angiogenesis correlates with metastatic disease, n-myc amplification, and poor outcome in human neuroblastoma J Clin Oncol 1996 14: 405–414

    Article  Google Scholar 

  16. Folkman J, Klagsburn M . Angiogenic factors Science 1987 235: 442–447

    Article  CAS  Google Scholar 

  17. Ohta Y, Endo Y, Tanaka M, Shimizu J, Oda M, Hayashi Y, Watanabe Y, Sasaki T . Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer Clin Cancer Res 1996 2: 1411–1416

    CAS  PubMed  Google Scholar 

  18. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR, Dvorak HF . Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract Cancer Res 1993 3: 4727–4735

    Google Scholar 

  19. Joseph I, Nelson JB, Denmeade SR, Isaac JT . Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue Clin Cancer Res 1997 3: 2507–2511

    CAS  PubMed  Google Scholar 

  20. Dirix LY, Vermeulen PB, Pawinski A, Prove A, Benoy I, De Pooter C, Martin M, Van Oosterom AT . Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients Br J Cancer 1997 76: 238–243

    Article  CAS  Google Scholar 

  21. Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J . Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancer J Natl Cancer Inst 1994 86: 356–361

    Article  CAS  Google Scholar 

  22. Ribatti D, Vacca RD, Nico B, Fanelli M, Roncali L, Dammacco F . Angiogenesis spectrum in the stroma of B-cell non-Hodgkin's lymphoma. An immunohistochemical and ultrastructural study Eur J Haematol 1996 56: 45–53

    Article  CAS  Google Scholar 

  23. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, Hossfeld DK . Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia Blood 1997 89: 1870–1875

    CAS  PubMed  Google Scholar 

  24. Aguayo A, Kantarjian H, Mansouri T, Gidel C, Estey E, Thomas D, Koller C, Estrov Z, O'Brien S, Keating M, Freireich E, Albitar M . Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes Blood 2000 96: 2240–2245

    CAS  PubMed  Google Scholar 

  25. Aguayo A, Kantarjian H, Mansouri T, Gidel C, Keating M, Giles F, Estrov Z, Barlogie B, Albitar M . Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia Blood 1999 94: 3717–3721

    CAS  PubMed  Google Scholar 

  26. Ribatti D, Vacca A, Nico B, Quondamatteo F, Ria R, Minischetti M, Marzullo A, Herken R, Roncali L, Dammacco F . Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma Br J Cancer 1999 79: 451–455

    Article  CAS  Google Scholar 

  27. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR . Prognostic value of bone marrow angiogenesis in multiple myeloma Clin Cancer Res 2000 6: 3111–3116

    CAS  PubMed  Google Scholar 

  28. Munshi N, Wilson CS, Penn J, Epstein J, Singhal S, Hough A, Sanderson R, Desikan R, Siegel D, Mehta J, Barlogie B . Angiogenesis in newly diagnosed multiple myeloma: poor prognosis with increased microvessel density (MVD) in bone marrow biopsies Blood 1998 92: 98a

    Google Scholar 

  29. Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp PR . Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma Leukemia 1999 13: 469–472

    Article  CAS  Google Scholar 

  30. Raimondo FD, Azzaro MP, Palumbo GA, Bagnato S, Giustolisi G, Floridia PM, Sortino G, Giustolisi R . Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood Haematologica 2000 85: 800–805

    PubMed  Google Scholar 

  31. Soubrier M, Dubost J, Serre AF, Ristori JM, Sauvezie B, Cathebras P, Piette JC, Chapman A, Authier FJ, Gherardi RK . Growth factors in POEMS syndrome: evidence for a marked increase in circulating vascular endothelial growth factor Arthr Rheum 1997 40: 786–787

    Article  CAS  Google Scholar 

  32. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddleman P, Munshi N, Anaissie E, Wilson C, Dhodhapkar M, Zeldis J, Barlogie B . Antitumor activity of thalidomide in refractory multiple myeloma N Engl J Med 1999 341: 1565–1571

    Article  CAS  Google Scholar 

  33. Rajkumar SV, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR . Thalidomide in the treatment of relapsed multiple myeloma Mayo Clin Proc 2000 75: 897–901

    Article  CAS  Google Scholar 

  34. Juliusson G, Celsing F, Turesson I, Lenhoff S, Adriansson M, Malm C . Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma Br J Haematol 2000 109: 89–96

    Article  CAS  Google Scholar 

  35. Kneller A, Raanani P, Hardan I, Avigdor A, Levi I, Berkowicz M, Ben-Bassat I . Therapy with thalidomide in refractory multiple myeloma patients – the revival of an old drug Br J Haematol 2000 108: 391–393

    Article  CAS  Google Scholar 

  36. Zomas A, Anagnostopoulos N, Dimopoulos MA . Successful treatment of multiple myeloma relapsing after high-dose therapy and autologous transplantation with thalidomide as a single agent Bone Marrow Transplant 2000 25: 1319–1320

    Article  CAS  Google Scholar 

  37. Pini M, Baraldi A, Pietrasanta D, Allione B, Depaoli L, Salvi F, Levis A . Low-dose thalidomide in the treatment of refractory myeloma Haematologica 2000 85: 1111–1112

    CAS  PubMed  Google Scholar 

  38. D'Amato RJ, Loughnan MS, Flynn E, Folkman J . Thalidomide is an inhibitor of angiogenesis Proc Natl Acad Sci USA 1994 91: 4082–4085

    Article  CAS  Google Scholar 

  39. Raje N, Anderson K . Thalidomide – a revival story N Engl J Med 1999 341: 1606–1608

    Article  CAS  Google Scholar 

  40. Corral LG, Haslett PAJ, Muller GW, Chen R, Wong LM, Ocampo CJ, Patterson RT, Stirling DI, Kaplan G . Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogs that are potent inhibitors of TNF-α J Immunol 1999 163: 380–386

    CAS  PubMed  Google Scholar 

  41. Gartner SM, Kaplan H . S. Long term culture of human bone marrow cells Proc Natl Acad Sci USA 1980 77: 4756–4759

    Article  CAS  Google Scholar 

  42. Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA, Schlossman RL, Anderson KC . Transforming growth factor β1: differential effects on multiple myeloma versus normal B cells Blood 1996 87: 1928–1938

    CAS  PubMed  Google Scholar 

  43. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, Anderson KC . Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B Blood 1996 87: 1104–1112

    CAS  PubMed  Google Scholar 

  44. Sjak-Shie NN, Sulur GG, Said JW, Schrage M, Vesico RA, Berenson JR . Vascular endothelial growth factor and angiogenesis in multiple myeloma Blood 1999 94 (Suppl. 1): 305b

    Google Scholar 

  45. Sezer O, Jakob C, Eucker J, Peh A, Gatz F, Possinger K . Basic fibroblast growth factor serum levels in multiple myeloma patients correlate with stage of disease and lapse under therapy Blood 1999 94 (Suppl. 1): 305b

    Google Scholar 

  46. Bellamy WT, Ritcher L, Frutiger Y, Grogan TM . Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies Cancer Res 1999 59: 728–733

    CAS  PubMed  Google Scholar 

  47. Dankbar B, Padro T, Leo R, Feldman B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J . Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma Blood 2000 95: 2630–2636

    CAS  PubMed  Google Scholar 

  48. Connolly DT, Olander JV, Heuvelman D, Nelson R, Monsell R, Siegel N, Haymore BL, Leimgruber R, Feder J . Human vascular permeability factor: isolation from U937 cells J Biol Chem 1989 264: 20017–20024

    CAS  PubMed  Google Scholar 

  49. Chauhan D, Uchiyama H, Urashima M, Yamamoto K, Anderson KC . Regulation of interleukin-6 in multiple myeloma and bone marrow stromal cells Stem Cells 1995 13 (Suppl. 2): 35–39

    Google Scholar 

  50. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, Mitsiades C, Raje N, Anderson KC . Vascular endothelial growth factor (VEGF)-triggers signaling cascades mediating multiple myeloma cell growth and migration Blood 2001 98: 428–435

    Article  CAS  Google Scholar 

  51. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT . The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor Science 1992 255: 989–991

    Article  CAS  Google Scholar 

  52. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodararowicz D, Bohlen P . Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor Biochem Biophys Res Commun 1992 187: 1579–1586

    Article  CAS  Google Scholar 

  53. Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT, Treon SP, Lin B, Schlossman R, Richardson P, Muller G, Stirling DI, Anderson KC . Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy Blood 2000 96: 2943–2950

    CAS  PubMed  Google Scholar 

  54. Salmivirta M, Heino J, Jalkanen M . Basic fibroblast growth factor–syndecan complex at cell surface or immobilized to matrix promotes cell growth J Biol Chem 1992 267: 17606–17610

    CAS  PubMed  Google Scholar 

  55. Dhodapkar M, Sanderson RD . Syndecan-1 (CD 138) in myeloma and lymphoid malignancies: a multifunctional regulator of cell behavior within the tumor microenvironment Leuk Lymphoma 1999 34: 35–43

    Article  CAS  Google Scholar 

  56. Filla MS, Dam P, Rapraeger AC . The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity J Cell Physiol 1998 174: 310–321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grant PO-1 78378 and the Doris Duke Distinguished Clinical Research Scientist Award (KCA), Multiple Myeloma Research Foundation and the National Institute of Health Career Development Award (SPT).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, D., Treon, S., Shima, Y. et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15, 1950–1961 (2001). https://doi.org/10.1038/sj.leu.2402295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402295

Keywords

This article is cited by

Search

Quick links