Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells

Abstract

Lovastatin is an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major regulatory enzyme of the mevalonate pathway. We have previously reported that lovastatin induces a significant apoptotic response in human acute myeloid leukemia (AML) cells. To identify the critical biochemical mechanism(s) essential for lovastatin-induced apoptosis, add-back experiments were conducted to determine which downstream product(s) of the mevalonate pathway could suppress this apoptotic response. Apoptosis induced by lovastatin was abrogated by mevalonate (MVA) and geranylgeranyl pyrophosphate (GGPP), and was partially inhibited by farnesyl pyrophosphate (FPP). Other products of the mevalonate pathway including cholesterol, squalene, lanosterol, desmosterol, dolichol, dolichol phosphate, ubiquinone, and isopentenyladenine did not affect lovastatin-induced apoptosis in AML cells. Our results suggest that inhibiting geranylgeranylation of target proteins is the predominant mechanism of lovastatin-induced apoptosis in AML cells. In support of this hypothesis, the geranylgeranyl transferase inhibitor (GGTI-298) mimicked the effect of lovastatin, whereas the farnesyl transferase inhibitor (FTI-277) was much less effective at triggering apoptosis in AML cells. Inhibition of geranylgeranylation was monitored and associated with the apoptotic response induced by lovastatin and GGTI-298 in the AML cells. We conclude that blockage of the mevalonate pathway, particularly inhibition of protein geranylgeranylation holds a critical role in the mechanism of lovastatin-induced apoptosis in AML cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS . Regulation of the mevalonate pathway Nature 1990 343: 425–430

    Article  CAS  Google Scholar 

  2. Russell DW, Setchell KD . Bile acid biosynthesis Biochemistry 1992 31: 4737–4749

    Article  CAS  Google Scholar 

  3. Edwards PA, Ericsson J . Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway Annu Rev Biochem 1999 68: 157–185

    Article  CAS  Google Scholar 

  4. Kabakoff BD, Doyle JW, Kandutsch AA . Relationships among dolichyl phosphate, glycoprotein synthesis, and cell culture growth Arch Biochem Biophys 1990 276: 382–389

    Article  CAS  Google Scholar 

  5. Olson RE, Rudney H . Biosynthesis of ubiquinone Vitam Horm 1983 40: 1–43

    Article  CAS  Google Scholar 

  6. Stocker R, Bowry VW, Frei B . Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol Proc Natl Acad Sci USA 1991 88: 1646–1650

    Article  CAS  Google Scholar 

  7. Grunler J, Ericsson J, Dallner G . Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins Biochim Biophys Acta 1994 1212: 259–277

    Article  CAS  Google Scholar 

  8. Jackson SM, Ericsson J, Edwards PA . Signaling molecules derived from the cholesterol biosynthetic pathway Subcell Biochem 1997 28: 1–21

    Article  CAS  Google Scholar 

  9. Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH, Minden MD, Penn LZ . Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach Blood 1999 93: 1308–1318

    CAS  PubMed  Google Scholar 

  10. Macaulay RJ, Wang W, Dimitroulakos J, Becker LE, Yeger H . Lovastatin-induced apoptosis of human medulloblastoma cell lines in vitro J Neurooncol 1999 42: 1–11

    Article  CAS  Google Scholar 

  11. Rubins JB, Greatens T, Kratzke RA, Tan AT, Polunovsky VA, Bitterman P . Lovastatin induces apoptosis in malignant mesothelioma cells Am J Respir Crit Care Med 1998 157: 1616–1622

    Article  CAS  Google Scholar 

  12. Dimitroulakos J, Yeger H . HMG-CoA reductase mediates the biological effects of retinoic acid on human neuroblastoma cells: lovastatin specifically targets P-glycoprotein-expressing cells Nat Med 1996 2: 326–333

    Article  CAS  Google Scholar 

  13. Dimitroulakos J, Ye LY, Benzaquen M, Moore MJ, Kamel-Reid S, Freedman MH, Yeger H, Penn LZ . Differential sensitivity of various pediatric cancers and squamous cell carcinomas to lovastatin-induced apoptosis: therapeutic implications Clin Cancer Res 2001 7: 158–167

    CAS  PubMed  Google Scholar 

  14. Keyomarsi K, Sandoval L, Band V, Pardee AB . Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin Cancer Res 1991 51: 3602–3609

    CAS  PubMed  Google Scholar 

  15. Minden MD, Dimitroulakos J, Nohynek D, Penn LZ . Lovastatin induced control of blast cell growth in an elderly patient with acute myeloblastic leukemia Leuk Lymphoma 2001 40: 659–662

    Article  CAS  Google Scholar 

  16. McGuire TF, Sebti SM . Geranylgeraniol potentiates lovastatin inhibition of oncogenic H-Ras processing and signaling while preventing cytotoxicity Oncogene 1997 14: 305–312

    Article  CAS  Google Scholar 

  17. Forman BM, Ruan B, Chen J, Schroepfer GJ, Jr, Evans RM . The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism Proc Natl Acad Sci USA 1997 94: 10588–10593

    Article  CAS  Google Scholar 

  18. Iimura O, Vrtovsnik F, Terzi F, Friedlander G . HMG-CoA reductase inhibitors induce apoptosis in mouse proximal tubular cells in primary culture Kidney Int 1997 52: 962–972

    Article  CAS  Google Scholar 

  19. Russell DW . Cholesterol biosynthesis and metabolism Cardiovasc Drugs Ther 1992 6: 103–110

    Article  CAS  Google Scholar 

  20. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F . Features of apoptotic cells measured by flow cytometry Cytometry 1992 13: 795–808

    Article  CAS  Google Scholar 

  21. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP . Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure Cytometry 1998 31: 1–9

    Article  CAS  Google Scholar 

  22. Sun J, Blaskovich MA, Knowles D, Qian Y, Ohkanda J, Bailey RD, Hamilton AD, Sebti SM . Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, taxol, and gemcitabine Cancer Res 1999 59: 4919–4926

    CAS  PubMed  Google Scholar 

  23. Bokoch GM . Biology of the Rap proteins, members of the ras superfamily of GTP- binding proteins Biochem J 1993 289: 17–24

    Article  CAS  Google Scholar 

  24. Desnoyers L, Anant JS, Seabra MC . Geranylgeranylation of Rab proteins Biochem Soc Trans 1996 24: 699–703

    Article  CAS  Google Scholar 

  25. Agarwal B, Rao CV, Bhendwal S, Ramey WR, Shirin H, Reddy BS, Holt PR . Lovastatin augments sulindac-induced apoptosis in colon cancer cells and potentiates chemopreventive effects of sulindac Gastroenterology 1999 117: 838–847

    Article  CAS  Google Scholar 

  26. Wang W, Macaulay RJ . Mevalonate prevents lovastatin-induced apoptosis in medulloblastoma cell lines Can J Neurol Sci 1999 26: 305–310

    Article  CAS  Google Scholar 

  27. Choi JW, Jung SE . Lovastatin-induced proliferation inhibition and apoptosis in C6 glial cells J Pharmacol Exp Ther 1999 289: 572–579

    CAS  PubMed  Google Scholar 

  28. Elson CE, Peffley DM, Hentosh P, Mo H . Isoprenoid-mediated inhibition of mevalonate synthesis: potential application to cancer Proc Soc Exp Biol Med 1999 221: 294–311

    CAS  PubMed  Google Scholar 

  29. Martinez-Botas J, Ferruelo AJ, Suarez Y, Gomez-Coronado D, Lasuncion MA . Induction of apoptosis in p53-null HL-60 cells by inhibition of lanosterol 14-alpha demethylase Biochimie 1998 80: 887–894

    Article  CAS  Google Scholar 

  30. Matzno S, Yamauchi T, Gohda M, Ishida N, Katsuura K, Hanasaki Y, Tokunaga T, Itoh H, Nakamura N . Inhibition of cholesterol biosynthesis by squalene epoxidase inhibitor avoids apoptotic cell death in L6 myoblasts J Lipid Res 1997 38: 1639–1648

    CAS  PubMed  Google Scholar 

  31. Maccarrone M, Bellincampi L, Melino G, Finazzi Agro A . Cholesterol, but not its esters, triggers programmed cell death in human erythroleukemia K562 cells Eur J Biochem 1998 253: 107–113

    Article  CAS  Google Scholar 

  32. Michikawa M, Yanagisawa K . Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death J Neurochem 1999 72: 2278–2285

    Article  CAS  Google Scholar 

  33. Hakomori S . Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism Cancer Res 1996 56: 5309–5318

    CAS  PubMed  Google Scholar 

  34. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ, Trepel J, Liang B, Patronas N, Venzon DJ, Reed E, Myers CE . Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer Clin Cancer Res 1996 2: 483–491

    CAS  PubMed  Google Scholar 

  35. Zhang FL, Casey PJ . Protein prenylation: molecular mechanisms and functional consequences Annu Rev Biochem 1996 65: 241–269

    Article  CAS  Google Scholar 

  36. Padayatty SJ, Marcelli M, Shao TC, Cunningham GR . Lovastatin-induced apoptosis in prostate stromal cells J Clin Endocrinol Metab 1997 82: 1434–1439

    Article  CAS  Google Scholar 

  37. Stark WW Jr, Blaskovich MA, Johnson BA, Qian Y, Vasudevan A, Pitt B, Hamilton AD, Sebti SM, Davies P . Inhibiting geranylgeranylation blocks growth and promotes apoptosis in pulmonary vascular smooth muscle cells Am J Physiol 1998 275: L55–L63

    PubMed  Google Scholar 

  38. Lacal JC . Regulation of proliferation and apoptosis by Ras and Rho GTPases through specific phospholipid-dependent signaling FEBS Lett 1997 410: 73–77

    Article  CAS  Google Scholar 

  39. Gomez J, Martinez AC, Gonzalez A, Rebollo A . Dual role of Ras and Rho proteins: at the cutting edge of life and death Immunol Cell Biol 1998 76: 125–134

    Article  CAS  Google Scholar 

  40. Kumagai N, Morii N, Fujisawa K, Nemoto Y, Narumiya S . ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells J Biol Chem 1993 268: 24535–24538

    CAS  PubMed  Google Scholar 

  41. Amano M, Mukai H, Ono Y, Chihara K, Matsui T, Hamajima Y, Okawa K, Iwamatsu A, Kaibuchi K . Identification of a putative target for Rho as the serine-threonine kinase protein kinase N Science 1996 271: 648–650

    Article  CAS  Google Scholar 

  42. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC . Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins Genes Dev 1997 11: 463–475

    Article  CAS  Google Scholar 

  43. Minden A, Lin A, Claret FX, Abo A, Karin M . Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs Cell 1995 81: 1147–1157

    Article  CAS  Google Scholar 

  44. Prendergast GC . Farnesyltransferase inhibitors: antineoplastic mechanism and clinical prospects Curr Opin Cell Biol 2000 12: 166–173

    Article  CAS  Google Scholar 

  45. Danesi R, McLellan CA, Myers CE . Specific labeling of isoprenylated proteins: application to study inhibitors of the post-translational farnesylation and geranylgeranylation Biochem Biophys Res Commun 1995 206: 637–643

    Article  CAS  Google Scholar 

  46. Du W, Lebowitz PF, Prendergast GC . Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB Mol Cell Biol 1999 19: 1831–1840

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Leukemia and Lymphoma Society (formerly the Leukemia Society of America) and the Canadian Institutes of Health Research (formerly the Medical Research Council of Canada). We thank Dr A Guha for kindly providing isoform specific Ras antibodies, Dr S Sebti for kindly providing GGTIs and FTI, Dr S Minkin for statistical aid, and the Penn Lab for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Z., Tan, M., Wei-Lynn Wong, W. et al. Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15, 1398–1407 (2001). https://doi.org/10.1038/sj.leu.2402196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402196

Keywords

This article is cited by

Search

Quick links