Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research
  • Published:

The ups and downs of Rho-kinase and penile erection: upstream regulators and downstream substrates of rho-kinase and their potential role in the erectile response

Abstract

In the absence of arousal stimuli, the activity of the Rho-kinase-mediated signaling pathway promotes vasoconstriction of the cavernosal arterioles and sinuses, keeping the penis in the nonerect state. Upon sexual arousal or during nocturnal tumescence, nitric oxide (NO), released from nonadrenergic/noncholinergic nerves or from local endothelial cells, induces cavernosal vasodilation, resulting in an elevation in blood flow and intracavernosal pressure to initiate the erectile response. Although NO is thought to be the principal stimulator of penile erection, the signaling mechanism(s) of NO-mediated cavernosal vasodilation is unknown. In this article, we will consider the novel hypothesis that NO induces penile erection through the inhibition of endogenous Rho-kinase-mediated vasoconstriction. Additionally, we will look downstream of Rho-kinase, introducing a potential role for various substrates in the mechanism of Rho-kinase-mediated constriction in the cavernosal vasculature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Andersson KE, Wagner G . Physiology of penile erection. Physiol Rev 1995; 75: 191–236.

    Article  CAS  Google Scholar 

  2. Minhas S, Cartledge J, Eardley I . The role of prostaglandins in penile erection. Prostaglandin Leukol Essent Fatty Acids 2000; 62: 137–146.

    Article  CAS  Google Scholar 

  3. Andersson KE, Steif CG . Neurotransmission and the contraction and relaxation of penile erectile tissues. World J Urol 1997; 15: 14–20.

    Article  CAS  Google Scholar 

  4. Okamura T, Ayajiki K, Toda N . Monkey corpus cavernosum relaxation mediated by NO and other relaxing factors derived from nerves. Am J Physiol 1998; 274: H1075–H1081.

    Article  CAS  Google Scholar 

  5. Burnett AL . The role of nitric oxide in the physiology of erection: a review. Biol Reprod 1995; 52: 485–489.

    Article  CAS  Google Scholar 

  6. Escrig A, Gonzalez-Mora JL, Mas M . Nitric oxide release in penile corpora cavernosa in a rat model of erection. J Physiol 1999; 516: 261–269.

    Article  CAS  Google Scholar 

  7. Fournier Jr GR, Juenemann KP, Lue TF, Tanagho EA . Mechanisms of venous occlusion during canaine penile erection: an anatomic demonstration. J Urol 1987; 137: 163–167.

    Article  Google Scholar 

  8. Azadzoi KM, Vlachiotis J, Pontari M, Siroky MB . Hemodynamics of penile erection: III. Measurement of deep intracavernosal and subtunical blood flow and oxygen tension. J Urol 1995; 153: 521–526.

    Article  CAS  Google Scholar 

  9. Ding YQ, Takada M, Kaneko T, Mizuno N . Colocalization of vasoactive intestinal polypeptide and nitric oxide in the penis-innervating neurons in the major pelvic ganglion of the rat. Neurosci Res 1995; 22: 129–131.

    Article  CAS  Google Scholar 

  10. Hempelmann RG, Papadopoulos I, Herzig S . Non-synergistic relaxant effects of vasoactive intestinal polypeptide and SIN-l in human isolated cavernous artery and corpus cavernosum. Eur J Pharmacol 1995; 276: 277–280.

    Article  CAS  Google Scholar 

  11. Kim YC et al. Modulation of vasoactive intestinal polypeptide (VIP)-mediated relaxation by nitric oxide and prostanoids in the rabbit corpus cavernosum. J Urol 1995; 153: 807–810.

    Article  CAS  Google Scholar 

  12. Traish A, Kim NN, Moreland RB, Goldstein I . Role of alpha adrenergic receptors in erectile function. Impotence Res 2000; 12S1: S48–S63.

    Article  Google Scholar 

  13. Veronneau-Longueville F et al. Expression of alpha1-adrenoceptor subtypes in rat corpus cavernosum. Int J Impotence Res 1998; 10: 187–194.

    Article  CAS  Google Scholar 

  14. Sironi G et al. Effects of intracavernous administration of selective antagonists of alpha 1-adrenoreceptor subtypes on erection in anesthetized rats and dogs. J Pharmacol Exp Ther 2000; 292: 974–981.

    CAS  PubMed  Google Scholar 

  15. Ari G, Vardi Y, Hoffman A, Finberg JP . Possible role for endothelins in penile erection. Eur J Pharm 1996; 307: 69–74.

    Article  CAS  Google Scholar 

  16. Dai Y et al. Receptor specific influence of endothelin-1 in the erectile response of the rat. Am J Physiol 2000; 279: R25–R30.

    CAS  Google Scholar 

  17. Saenz de Tejada I et al. Endothelin: localization, synthesis, activity, and receptor types in human penile corpus cavernosum. Am J Physiol 1991; 261: H1078–H1085.

    CAS  PubMed  Google Scholar 

  18. Iwamoto Y et al. Multiple pathways of angiotensin I conversion and their functional role in the canine penile corpus cavernosum. J Pharm Exp Ther 2001; 298: 43–48.

    CAS  Google Scholar 

  19. Mills TM et al. Effect of Rho-kinase inhibition on vasoconstriction in the penile circulation. J Appl Physiol 2001; 91: 1269–1273.

    Article  CAS  Google Scholar 

  20. Mills TM, Chitaley K, Lewis RW . Vasoconstrictors in erectile physiology. Int J Impotence Res 2001; 13: 212–220.

    Article  Google Scholar 

  21. Pfitzer G, Arner A . Involvement of small GTPases in the regulation of smooth muscle contraction. Acta Physiol Scand 1998; 164: 449–456.

    Article  CAS  Google Scholar 

  22. Somlyo AP, Somlyo AV . Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II: a review. J Physiol 2000; 522: 177–185.

    Article  CAS  Google Scholar 

  23. Somlyo AP, Somlyo AV . From Pharamacomechanical coupling to G-proteins and myosin phosphatase: a review. Acta Physiol Scand 1998; 164: 437–448.

    Article  CAS  Google Scholar 

  24. Uehata M et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990–994.

    Article  CAS  Google Scholar 

  25. Chitaley K et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 2001; 7: 119–122.

    Article  CAS  Google Scholar 

  26. Kimura K et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245–248.

    Article  CAS  Google Scholar 

  27. Cohen RA et al. Mechanism of nitric oxide-induced vasodilation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 1999; 84: 210–219.

    Article  CAS  Google Scholar 

  28. Plane F et al. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Br J Pharmacol 1998; 123: 1351–1358.

    Article  CAS  Google Scholar 

  29. Sanders DB, Kelley T, Larson D . The role of nitric oxide synthase/nitric oxide in vascular smooth muscle control. Perfusion 2000; 15: 97–104.

    Article  CAS  Google Scholar 

  30. Kanagy NL, Charpie JR, Webb RC . Nitric oxide regulation of ADP-ribosylation of G proteins in hypertension. Med Hypotheses 1995; 44: 159–164.

    Article  CAS  Google Scholar 

  31. Gundimeda U, Chen ZH, Goplakrishna H . Nitric oxide-generating agents induce reversible oxidative inactivation of protein kinase C by nitrosylation. FASEB J 1993; 7: 395.

    Google Scholar 

  32. Brune B, Dimmeler S, Molina Y, Vedia L, Lapetina EG . Nitric oxide, a signal for ADP-ribosylation of proteins.Life Sci 1994; 54: 61–70.

    Article  CAS  Google Scholar 

  33. Bradley A, Morgan K. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by Aequorin. J Physiol 1987; 385: 47–448.

    Article  Google Scholar 

  34. DeFeo T, Morgan K. Calcium–force relationships as detected with Aequorin in two different vascular smooth muscles of the ferret. J Physiol 1985; 369: 269–282.

    Article  CAS  Google Scholar 

  35. Sauzeau V et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem. 2000; 275: 21722–21729.

    Article  CAS  Google Scholar 

  36. Sawada N et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Comm 2001; 280: 798–805.

    Article  CAS  Google Scholar 

  37. Chitaley K, Webb RC . Nitric oxide induces dilation of rat aorta via inhibition of Rho-kinase signaling. Hypertension 2002; 39(Pt 2): 438–442.

    Article  Google Scholar 

  38. Kawano Y et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147: 1023–1037.

    Article  CAS  Google Scholar 

  39. Amano M, Fukata Y, Kaibuchi K . Regulation and functions of Rho-associated kinase: a Review. Exp Cell Res 2000; 261: 44–51.

    Article  CAS  Google Scholar 

  40. Fukata Y, Kaibuchi K, Amano M, Kaibuchi K . Rho/Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharm Sci 2001; 22: 32–39.

    Article  CAS  Google Scholar 

  41. Kureishi Y et al. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 1997; 272: 12257–12260.

    Article  CAS  Google Scholar 

  42. Amano M et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996; 271: 20246–20249.

    Article  CAS  Google Scholar 

  43. Koyama M et al. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 2000; 475: 197–200.

    Article  CAS  Google Scholar 

  44. Kitzawa T, Eto M, Woodsome TP, Brautigan DL . Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phophatase to enhance vascular smooth muscle contractility. J Biol Chem 2000; 275: 9897–9900.

    Article  Google Scholar 

  45. Kaneko T et al. Identification of calponin as a novel substrate of Rho-kinase. Biochem Biophys Res Comm 2000; 273: 110–116.

    Article  CAS  Google Scholar 

  46. Fukata Y, Oshiro N, Kaibuchi K . Activation of moesin and adducin by Rho-kinase downstream of Rho. Biophys Chem 1999; 82: 139–147.

    Article  CAS  Google Scholar 

  47. Ferrandi M et al. Evidence for an interaction between adducin and Na+-K+-ATPase: relation to genetic hypertension. Am J Physiol 1999; 277: H1338–H1349.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Chitaley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitaley, K., Webb, R. & Mills, T. The ups and downs of Rho-kinase and penile erection: upstream regulators and downstream substrates of rho-kinase and their potential role in the erectile response. Int J Impot Res 15, 105–109 (2003). https://doi.org/10.1038/sj.ijir.3900964

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3900964

Keywords

This article is cited by

Search

Quick links