Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Activators of soluble guanylate cyclase for the treatment of male erectile dysfunction

Abstract

Soluble guanylate cyclase (sGC) is an important enzyme in corpus cavernosum smooth muscle cells as it is one of the regulators of the synthesis of cGMP. The efficacy of sildenafil (Viagra™) in the treatment of male erectile dysfunction indicates the importance of the cGMP system in the erectile response as the increased levels of cGMP induce relaxation of the corpus cavernosum. sGC is physiologically activated by nitric oxide (NO) during sexual stimulation, and its activity can be pharmacologically enhanced by several NO-donors. Agents like YC-1 can also activate sGC after binding to a novel allosteric site in the enzyme, a site different from the NO binding site. YC-1 can relax rabbit cavernosal tissue and it facilitates penile erection in vivo. This review summarizes the enzymology, biochemistry and pharmacology of this novel allosteric site and its relevance for the regulation of penile function. This type of sGC activators represent a new class of compounds with a different pharmacological profile in comparison to the classical NO-donors and they could be beneficial for the treatment of male erectile dysfunction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Moreland RB, Hsieh G, Nakane M, Brioni JD . The biochemical and neurologic basis for the treatment of male erectile dysfunction. J Pharmacol Exp Therap 2001 296: 225–234.

    CAS  Google Scholar 

  2. Nakane M et al . Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung. Biochem Biophys Res Commun 1988 157: 1139–1147.

    Article  CAS  PubMed  Google Scholar 

  3. Nakane M et al . Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 1990 265: 16841–16845.

    CAS  PubMed  Google Scholar 

  4. Yuen PS, Potter LR, Garbers DL . A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry 1990 29: 10872–10878.

    Article  CAS  PubMed  Google Scholar 

  5. Gupta G, Azam M, Yang L, Danziger RS . The beta2 subunit inhibits stimulation of the alpha1/beta1 form of soluble guanylyl cyclase by nitric oxide. Potential relevance to regulation of blood pressure. J Clin Invest 1997 100: 1488–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harteneck C et al . Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett 1991 292: 217–222.

    Article  CAS  PubMed  Google Scholar 

  7. Giuili G, Scholl U, Bulle F, Guellaen G . Molecular cloning of the cDNAs coding for the two subunits of soluble guanylyl cyclase from human brain. FEBS Lett 1992 304: 83–88.

    Article  CAS  PubMed  Google Scholar 

  8. Zabel U, Weeger M, La M, Schmidt HH . Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem J 1998 335: 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Behrends S, Vehse K . The beta(2) subunit of soluble guanylyl cyclase contains a human-specific frameshift and is expressed in gastric carcinoma. Biochem Biophys Res Commun 2000 271: 64–69.

    Article  CAS  PubMed  Google Scholar 

  10. Nakane M et al . Activation of soluble guanylate cyclase causes relaxation of corpus cavernosum tissue: synergism of nitric oxide and YC-1. J Urol 2001 165: Suppl 5 223.

    Google Scholar 

  11. Kamisaki Y et al . Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 1986 261: 7236–7241.

    CAS  PubMed  Google Scholar 

  12. Denninger JW, Marletta MA . Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1999 1411: 334–350.

    Article  CAS  PubMed  Google Scholar 

  13. Humbert P et al . Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem 1990 190: 273–278.

    Article  CAS  PubMed  Google Scholar 

  14. Schrammel A et al . Characterization of 1H-[1,2,4]oxadi-azolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol 1996 50: 1–5.

    CAS  PubMed  Google Scholar 

  15. Olesen SP et al . Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Br J Pharmacol 1998 123: 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gruetter CA, Kadowitz PJ, Ignarro LJ . Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol 1981 59: 150–156.

    Article  CAS  PubMed  Google Scholar 

  17. Mulsch A, Busse R, Liebau S, Forstermann U . LY 83583 interferes with the release of endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J Pharmacol Exp Ther 1988 247: 283–288.

    CAS  PubMed  Google Scholar 

  18. Mayer B, Brunner F, Schmidt K . Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol 1993 45: 367–374.

    Article  CAS  PubMed  Google Scholar 

  19. Prasad RK, Behrooz A, Ismail-Beigi F . LY-83583 stimulates glucose transporter-1-mediated glucose transport independent of changes in cGMP levels. Eur J Pharmacol 1999 366: 101–109.

    Article  CAS  PubMed  Google Scholar 

  20. Yu SM, Kuo SC . Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. Br J Pharmacol 1995 114: 1587–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wegener JW Nawrath H . Differential effects of isoliquiritigenin and YC-1 in rat aortic smooth muscle. Eur J Pharmacol 1997 323: 89–91.

    Article  CAS  PubMed  Google Scholar 

  22. Wegener JW, Nawrath H . Cardiac effects of isoliquiritigenin. Eur J Pharmacol 1997 326: 37–44.

    Article  CAS  PubMed  Google Scholar 

  23. Wu CC et al . YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br J Pharmacol 1995 116: 1973–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mulsch A et at . Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br J Pharmacol 1997 120: 681–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao Y, Brandish PE, Ballou DP, Marletta MA . A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci USA 1999 96: 14753–14758.

    Article  CAS  PubMed  Google Scholar 

  26. Lee YC, Martin E, Murad F . Human recombinant soluble guanylyl cyclase: expression, purification, and regulation. Proc Natl Acad Sci USA 2000 97: 10763–10768.

    Article  CAS  PubMed  Google Scholar 

  27. Brandish PE, Buechler W, Marletta MA . Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: acceleration by thiols and oxyhemoglobin. Biochemistry 1998 37: 16898–16907.

    Article  CAS  PubMed  Google Scholar 

  28. Hammes G, Wu C . Regulation of enzyme activity. Science 1971 172: 1205–1211.

    Article  CAS  PubMed  Google Scholar 

  29. Monod J, Changeaux J, Jacob F . Allosteric proteins and cellular control systems. J Mol Biol 1963 6: 306–318.

    Article  CAS  PubMed  Google Scholar 

  30. Friebe A, Koesling D . Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 1998 53: 123–127.

    Article  CAS  PubMed  Google Scholar 

  31. Stasch JP et al . NO-independent regulatory site on soluble guanylate cyclase Nature 2001 410: 212–215.

    Article  CAS  PubMed  Google Scholar 

  32. Friebe A, Russwurm M, Mergia E, Koesling D . A point-mutated guanylyl cyclase with features of the YC-1-stimulated enzyme: implications for the YC-1 binding site? Biochemistry 1999 38: 15253–15257.

    Article  CAS  PubMed  Google Scholar 

  33. Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP . Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 2000 184: 409–420.

    Article  CAS  PubMed  Google Scholar 

  34. Galle J et al . Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity. Br J Pharmacol 1999 127: 195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hwang TL, Wu CC, Teng CM . YC-1 potentiates nitric oxide-induced relaxation in guinea-pig trachea. Br J Pharmacol 1999 128: 577–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holmquist F, Stief C, Jonas U, Andersson K . Efects of the nitric oxide synthase inhibitor N-nitro-L-arginine on the erectile response to cavernous nerve stimulation in the rabbit. Acta Physiologica Scandinavica 1991 143: 299–304.

    Article  CAS  PubMed  Google Scholar 

  37. Bush PA et al . Nitric oxide is a potent relaxant of human and rabbit corpus cavernosum. J Urol 1992 147: 1650–1655.

    Article  CAS  PubMed  Google Scholar 

  38. Flesch M et al . Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther 1997 281: 1340–1349.

    CAS  PubMed  Google Scholar 

  39. Lucas KA et al . Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 2000 52: 375–414.

    CAS  Google Scholar 

  40. Hobbs AJ . Soluble guanylate cyclase: the forgotten sibling. Trends Pharmacol Sci 1997 18: 484–491.

    Article  CAS  PubMed  Google Scholar 

  41. Homer KL, Fiore SA, Wanstall JC . Inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) of responses to nitric oxide-donors in rat pulmonary artery: influence of the mechanism of nitric oxide generation. J Pharmacy Pharmacol 1999 51: 135–139.

    Article  CAS  Google Scholar 

  42. Tseng CM, Tabrizi-Fard MA, Fung HL . Differential sensitivity among nitric oxide donors toward ODQ-mediated inhibition of vascular relaxation. J Pharmacol Exp Ther 2000 292: 737–742.

    CAS  PubMed  Google Scholar 

  43. Wegener JW, Gath I, Forstermann U, Nawrath H . Activation of soluble guanylyl cyclase by YC-1 in aortic smooth muscle but not in ventricular myocardium from rat. Br J Pharmacol 1997 122: 1523–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmidt K, Schrammel A, Koesling D, Mayer B . Molecular mechanisms involved in the synergistic activation of soluble guanylyl cyclase by YC-1 and nitric oxide in endothelial cells. Mol Pharmacol 2001 59: 220–224.

    Article  CAS  PubMed  Google Scholar 

  45. O'Reilly DA et al . YC-1 enhances the responsiveness of tolerant vascular smooth to glyceryl trinitrate. Can J Physiol Pharmacol 2001 79: 43–48.

    Article  CAS  PubMed  Google Scholar 

  46. Andersson KE, Wagner G . Physiology of penile erection. Physiol Rev 1995 75: 191–236.

    Article  CAS  PubMed  Google Scholar 

  47. Liu SP et al . YC-1, a NO-independent guanylate cyclase stimulator, relaxes rabbit cavernous smooth muscle via increasing intracellular cyclic GMP. Int J Impot Res 2000 12: Suppl S18.

    Google Scholar 

  48. Ko FN et al . YC-1, a novel activator of platelet guanylate cyclase. Blood 1994 84: 4226–4233.

    CAS  PubMed  Google Scholar 

  49. Teng CM et al . YC-1, a nitric-oxide independent activator of soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. Eur J Pharmacol 1997 320: 161–166.

    Article  CAS  PubMed  Google Scholar 

  50. Hsieh G et al . YC-1 potentiates the NO/cGMP pathway in corpus cavernosum and facilitates penile erection in rats (submitted).

  51. Mizusawa H et al . NO-independent activation of soluble guanylate cyclase by YC-1 causes erectile responses in the rat (submitted).

  52. Rothermund L et al . Acute blood pressure effects of YC-1 induce activation of guanylate cyclase in normotensive and hypertensive rats. Br J Pharmacol 2000 130: 205–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moreland RB . Pathophysiology of erectile dysfunction: the contributions of trabecular structure to function and the role of functional antagonism. Int J Impot Res 2000 12: Suppl S39–46.

    Article  PubMed  Google Scholar 

  54. Melman A, Gingell JC . The epidemiology and pathophysiology of erectile dysfunction. J Urol 1999 161: 5–11.

    Article  CAS  PubMed  Google Scholar 

  55. Miller MA et al . Adenylate and guanylate cyclase activity in the penis and aorta of the diabetic rat: an in vitro study. Br J Urol 1994 74: 106–111.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Brioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brioni, J., Nakane, M., Hsieh, G. et al. Activators of soluble guanylate cyclase for the treatment of male erectile dysfunction. Int J Impot Res 14, 8–14 (2002). https://doi.org/10.1038/sj.ijir.3900801

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3900801

Keywords

This article is cited by

Search

Quick links