Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease

Abstract

Linkage analyses have implicated chromosome 7p21.3 as a susceptibility region for inflammatory bowel disease (IBD). Recently, the mouse phenotype with diarrhea and goblet cell dysfunction caused by anterior gradient protein 2 dysfunction was reported (European patent WO2004056858). The genes encoding for the human homologues AGR2 and AGR3 are localized on chromosome 7p21.3. The gene structures were verified and mutation detection was performed in 47 IBD patients. A total of 30 single nucleotide polymorphisms (SNPs) were tested for association to ulcerative colitis (UC, N=317) and Crohn's disease (CD, N=631) in a German cohort and verified in a UK cohort of 384 CD and 311 UC patients. An association signal was identified in the 5′ region of the AGR2 gene (most significant SNP hcv1702494, nominal PTDT=0.011, Pcase/control=0.0007, OR=1.34, combined cohort). The risk haplotype carried an odds ratio of 1.43 in the German population (P=0.002). AGR2 was downregulated in UC patients as compared to normal controls (P<0.001) and a trend toward lower expression was seen in carriers of the risk alleles. Luciferase assays of the AGR2 promoter showed regulation by the goblet cell-specific transcription factors FOXA1 and FOXA2. In summary, AGR2 represents an interesting new avenue into the etiopathophysiology of IBD and the maintenance of epithelial integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Shivananda S, Lennard-Jones J, Logan R, Fear N, Price A, Carpenter L et al. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut 1996; 39: 690–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Probert CS, Jayanthi V, Rampton DS, Mayberry JF . Epidemiology of inflammatory bowel disease in different ethnic and religious groups: limitations and aetiological clues. Int J Colorectal Dis 1996; 11: 25–28.

    Article  CAS  PubMed  Google Scholar 

  3. Podolsky DK . Inflammatory bowel disease (1). N Engl J Med 1991; 325: 928–937.

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton SR . The differential diagnosis of idiopathic inflammatory disease by colorectal biopsy. Int J Colorectal Dis 1987; 2: 113–117.

    Article  CAS  PubMed  Google Scholar 

  5. Fiocchi C . Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182–205.

    Article  CAS  PubMed  Google Scholar 

  6. Podolsky DK . Inflammatory bowel disease. N Engl J Med 2002; 347: 417–429.

    Article  CAS  PubMed  Google Scholar 

  7. Orholm M, Munkholm P, Langholz E, Nielsen OH, Sorensen IA, Binder V . Familial occurrence of inflammatory bowel disease. N Engl J Med 1991; 324: 84–88.

    Article  CAS  PubMed  Google Scholar 

  8. Colombel JF, Grandbastien B, Gower-Rousseau C, Plegat S, Evrard JP, Dupas JL et al. Clinical characteristics of Crohn's disease in 72 families. Gastroenterology 1996; 111: 604–607.

    Article  CAS  PubMed  Google Scholar 

  9. Satsangi J, Grootscholten C, Holt H, Jewell DP . Clinical patterns of familial inflammatory bowel disease. Gut 1996; 38: 738–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B . Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 1988; 29: 990–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson NP, Driscoll R, Pounder RE, Wakefield AJ . Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 1996; 312: 95–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Curran ME, Lau KF, Hampe J, Schreiber S, Bridger S, Macpherson AJ et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16. Gastroenterology 1998; 115: 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  13. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.

    Article  CAS  PubMed  Google Scholar 

  14. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–606.

    Article  CAS  PubMed  Google Scholar 

  15. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 2001; 357: 1925–1928.

    Article  CAS  PubMed  Google Scholar 

  16. Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 2004; 36: 476–480.

    Article  CAS  PubMed  Google Scholar 

  17. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36: 471–475.

    Article  CAS  PubMed  Google Scholar 

  18. Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996; 14: 199–202.

    Article  CAS  PubMed  Google Scholar 

  19. Hampe J, Schreiber S, Shaw SH, Lau KF, Bridger S, Macpherson AJ et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet 1999; 64: 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hampe J, Shaw SH, Saiz R, Leysens N, Lantermann A, Mascheretti S et al. Linkage of inflammatory bowel disease to human chromosome 6p. Am J Hum Genet 1999; 65: 1647–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petek E, Windpassinger C, Egger H, Kroisel PM, Wagner K . Localization of the human anterior gradient-2 gene (AGR2) to chromosome band 7p21.3 by radiation hybrid mapping and fluorescence in situ hybridisation. Cytogenet Cell Genet 2000; 89: 141–142.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson DA, Weigel RJ . hAG-2, the human homologue of the Xenopus laevis cement gland gene XAG-2, is coexpressed with estrogen receptor in breast cancer cell lines. Biochem Biophys Res Commun 1998; 251: 111–116.

    Article  CAS  PubMed  Google Scholar 

  23. Lennard-Jones JE . Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 1989; 170: 2–6; discussion 16–19.

    Article  CAS  PubMed  Google Scholar 

  24. Hampe J, Frenzel H, Mirza MM, Croucher PJ, Cuthbert A, Mascheretti S et al. Evidence for a NOD2-independent susceptibility locus for inflammatory bowel disease on chromosome 16p. Proc Natl Acad Sci USA 2002; 99: 321–326. Epub 2001 Dec 18.

    Article  CAS  PubMed  Google Scholar 

  25. Hampe J, Wollstein A, Lu T, Frevel HJ, Will M, Manaster C et al. An integrated system for high throughput TaqMan based SNP genotyping. Bioinformatics 2001; 17: 654–655.

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Marmaro J, Todd JA . Towards fully automated genome-wide polymorphism screening. Nat Genet 1995; 9: 341–342.

    Article  CAS  PubMed  Google Scholar 

  27. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Clayton D . A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999; 65: 1170–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krawczak M, Konecki DS, Schmidtke J, Duck M, Engel W, Nutzenadel W et al. Allelic association of the cystic fibrosis locus and two DNA markers, XV2c and KM19, in 55 German families. Hum Genet 1988; 80: 78–80.

    Article  CAS  PubMed  Google Scholar 

  31. Sive HL, Hattori K, Weintraub H . Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 1989; 58: 171–180.

    Article  CAS  PubMed  Google Scholar 

  32. Lantz KA, Kaestner KH . Winged-helix transcription factors and pancreatic development. Clin Sci (London) 2005; 108: 195–204.

    Article  CAS  Google Scholar 

  33. Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang SL et al. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem 2005; 24: 24.

    Google Scholar 

  34. Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 2004; 131: 953–964.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the German National Genome Research Network (NGFN, DHGP), the Competence Network IBD and the Network ‘Fat and metabolism’ of the BmBF, the European Commission (FP5 grant), the German Research Council (DFG For423, Ha 3091/1-1) and the POPGEN population project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Hampe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, W., Rosenstiel, P., Huse, K. et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun 7, 11–18 (2006). https://doi.org/10.1038/sj.gene.6364263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364263

Keywords

This article is cited by

Search

Quick links