Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytotoxic Agents

The effect of modulation of glutathione cellular content on busulphan-induced cytotoxicity on hematopoietic cells in vitro and in vivo

Abstract

Busulphan is used in conditioning regimens prior to SCT. A relationship between exposure to busulphan, expressed as an area under the plasma concentration time curve (AUC), and effect and/or adverse effects, such as veno-occlusive disease (VOD), was reported. Exhaustion of glutathione (GSH) contributes to VOD and modulation of intracellular levels of GSH influences bulsulphan-induced toxicity in hepatocytes. Thus, increase of GSH might serve as prophylaxis against VOD. However, it should not interfere with the myeloablative effects of busulphan. We investigated the relationship between exposure to busulphan, and its in vitro toxicity to CD34+ hematopoietic progenitors from volunteers using clonogenic assays. Busulphan inhibited colony formation by CD34+ cells in an AUC-dependent manner. Myeloid progenitors were more sensitive than erythroid progenitors, expressed as 100% inhibition of colony formation (68.7 ± 7.5 μg.h/ml and 140.3 ± 35.7, respectively). The observed exposure corresponds to the total AUC obtained in patients treated with busulphan (1 mg/kg/day) for 4 days. Secondly, we studied the effect of modulation of GSH cellular levels on busulphan-induced toxicity in vitro in CD34+ cells from volunteers, and in vivo in bone marrow cells from Balb/c mice. The intracellular concentration of GSH was increased or decreased by treatment with N-acetylcysteine or buthionine sulfoximine, respectively. Neither in vitro nor in vivo treatment with GSH modulators affected the hematological toxicity of busulphan. Thus, N-acetylcysteine would not interfere with the myeloablative effect of busulphan and therefore it is a potential candidate for VOD prophylaxis during busulphan-based conditioning regimens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hassan Z, Ljungman P, Ringdén O et al. Pharmacokinetics of liposomal busulphan in man Bone Marrow Transplant 2001 27: 479 485

    Article  CAS  PubMed  Google Scholar 

  2. Vassal G, Fischer A, Challine D et al. Busulfan disposition below the age of three: alteration in children with lysosomal storage disease Blood 1993 82: 1030 1034

    CAS  PubMed  Google Scholar 

  3. Grochow LB . Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens Semin Oncol 1993 20: 18 25

    CAS  PubMed  Google Scholar 

  4. Grochow LB, Jones RJ, Brundrett RB et al. Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation Cancer Chemother Pharmacol 1989 25: 55 61

    Article  CAS  PubMed  Google Scholar 

  5. Hassan M, Oberg G, Bekassy AN et al. Pharmacokinetics of high-dose busulphan in relation to age and chronopharmacology Cancer Chemother Pharmacol 1991 28: 130 134

    Article  CAS  PubMed  Google Scholar 

  6. Hassan M, Ljungman P, Bolme P et al. Busulfan bioavailability Blood 1994 84: 2144 2150

    CAS  PubMed  Google Scholar 

  7. Slattery JT, Sanders JE, Buckner CD et al. Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics Bone Marrow Transplant 1995 16: 31 42

    CAS  PubMed  Google Scholar 

  8. Vassal G, Deroussent A, Challine D et al. Is 600 mg/m2 the appropriate dosage of busulfan in children undergoing bone marrow transplantation? Blood 1992 79: 2475 2479

    CAS  PubMed  Google Scholar 

  9. Marshall MV, Marshall MH, Degen DR et al. In vitro cytotoxicity of hepsulfam against human tumor cell lines and primary human tumor colony forming units Stem Cells 1993 11: 62 69

    Article  CAS  PubMed  Google Scholar 

  10. Pacheco DY, Cook C, Hincks JR et al. Mechanisms of toxicity of hepsulfam in human tumor cell lines Cancer Res 1990 50: 7555 7558

    CAS  PubMed  Google Scholar 

  11. Pacheco DY, Stratton NK, Gibson NW . Comparison of the mechanism of action of busulfan with hepsulfam, a new antileukemic agent, in the L1210 cell line Cancer Res 1989 49: 5108 5110

    CAS  PubMed  Google Scholar 

  12. Hassan Z, Hassan M, Hellstrom-Lindberg E . The pharmacodynamic effect of busulfan in the P39 myeloid cell line in vitro Leukemia 2001 15: 1240 1247

    Article  CAS  PubMed  Google Scholar 

  13. Down JD, Ploemacher RE . Transient and permanent engraftment potential of murine hematopoietic stem cell subsets: differential effects of host conditioning with gamma radiation and cytotoxic drugs Exp Hematol 1993 21: 913 921

    CAS  PubMed  Google Scholar 

  14. Down JD, Boudewijn A, Dillingh JH et al. Relationships between ablation of distinct haematopoietic cell subsets and the development of donor bone marrow engraftment following recipient pretreatment with different alkylating drugs Br J Cancer 1994 70: 611 616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reynolds M, McCann SR . Sequential studies of bone marrow haemopoietic progenitors (CFU-GEM, BFU-E, CFU-E, CFU-GM) following busulfan treatment in Balb/c mice J Immunopharmacol 1986 8: 99 116

    Article  CAS  PubMed  Google Scholar 

  16. Hincks JR, Adlakha A, Cook CA et al. In vitro studies on the mechanism of action of hepsulfam in chronic myelogenous leukemia patients Cancer Res 1990 50: 7559 7563

    CAS  PubMed  Google Scholar 

  17. Kubota K, Preisler HD, Costanzo C et al. In vitro busulfan sensitivity of granulocyte–macrophage and erythroid progenitor cells in patients with chronic myelogenous leukemia Cancer Res 1983 43: 6090 6093

    CAS  PubMed  Google Scholar 

  18. Preisler HD, Kirshner J . In vitro drug sensitivity studies of CFUc in chronic myelocytic leukemia: I. Suicide indices and busulfan sensitivity determinations during the chronic phase Exp Hematol 1983 11: 618 625

    CAS  PubMed  Google Scholar 

  19. Berger DP, Winterhalter BR, Dengler WA et al. Preclinical activity of hepsulfam and busulfan in solid human tumor xenografts and human bone marrow Anticancer Drugs 1992 3: 531 539

    Article  CAS  PubMed  Google Scholar 

  20. Yeager AM, Wagner JE, Graham ML et al. Optimization of busulfan dosage in children undergoing bone marrow transplantation: a pharmacokinetic study of dose escalation Blood 1992 80: 2425 2428

    CAS  PubMed  Google Scholar 

  21. Vassal G, Deroussent A, Hartmann O et al. Dose-dependent neurotoxicity of high-dose busulfan in children: a clinical and pharmacological study Cancer Res 1990 50: 6203 6207

    CAS  PubMed  Google Scholar 

  22. Carreras E . Veno-occlusive disease of the liver after hemopoietic cell transplantation Eur J Haematol 2000 64: 281 291

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Kanel GC, DeLeve LD . Support of sinusoidal endothelial cell glutathione prevents hepatic veno-occlusive disease in the rat Hepatology 2000 31: 428 434

    Article  CAS  PubMed  Google Scholar 

  24. Meister A . Glutathione metabolism and its selective modification J Biol Chem 1988 263: 17205 17208

    CAS  PubMed  Google Scholar 

  25. Chyka PA, Butler AY, Holliman BJ et al. Utility of acetylcysteine in treating poisonings and adverse drug reactions Drug Saf 2000 22: 123 148

    Article  CAS  PubMed  Google Scholar 

  26. Ringden O, Remberger M, Lehmann S et al. N-acetylcysteine for hepatic veno-occlusive disease after allogeneic stem cell transplantation Bone Marrow Transplant 2000 25: 993 996

    Article  CAS  PubMed  Google Scholar 

  27. Mulder GJ, Ouwerkerk-Mahadevan S . Modulation of glutathione conjugation in vivo: how to decrease glutathione conjugation in vivo or in intact cellular systems in vitro Chem Biol Interact 1997 105: 17 34

    Article  CAS  PubMed  Google Scholar 

  28. Griffith OW, Meister A . Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine) J Biol Chem 1979 254: 7558 7560

    CAS  PubMed  Google Scholar 

  29. Marchand DH, Remmel RP, Abdel-Monem MM . Biliary excretion of a glutathione conjugate of busulfan and 1,4-diiodobutane in the rat Drug Metab Dispos 1988 16: 85 92

    CAS  PubMed  Google Scholar 

  30. Hassan M, Ehrsson H . Metabolism of 14C-busulfan in isolated perfused rat liver Eur J Drug Metab Pharmacokinet 1987 12: 71 76

    Article  CAS  PubMed  Google Scholar 

  31. Ritter CA, Bohnenstengel F, Hofmann U et al. Determination of tetrahydrothiophene formation as a probe of in vitro busulfan metabolism by human glutathione S-transferase A1–1: use of a highly sensitive gas chromatographic-mass spectrometric method J Chromatogr B Biomed Sci Appl 1999 730: 25 31

    Article  CAS  PubMed  Google Scholar 

  32. Czerwinski M, Gibbs JP, Slattery JT . Busulfan conjugation by glutathione S-transferases alpha, mu, and pi Drug Metab Dispos 1996 24: 1015 1019

    CAS  PubMed  Google Scholar 

  33. Gibbs JP, Czerwinski M, Slattery JT . Busulfan-glutathione conjugation catalyzed by human liver cytosolic glutathione S-transferases Cancer Res 1996 56: 3678 3681

    CAS  PubMed  Google Scholar 

  34. DeLeve LD, Wang X . Role of oxidative stress and glutathione in busulfan toxicity in cultured murine hepatocytes Pharmacology 2000 60: 143 154

    Article  CAS  PubMed  Google Scholar 

  35. Czerwinski M, Kiem HP, Slattery JT . Human CD34+ cells do not express glutathione S-transferases alpha Gene Ther 1997 4: 268 270

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Groves MJ, Hepburn MD et al. Glutathione S-transferase enzyme expression in hematopoietic cell lines implies a differential protective role for T1 and A1 isoenzymes in erythroid and for M1 in lymphoid lineages Haematologica 2000 85: 573 579

    CAS  PubMed  Google Scholar 

  37. Hassan M, Hassan Z, Nilsson C et al. Pharmacokinetics and distribution of liposomal busulfan in the rat: a new formulation for intravenous administration Cancer Chemother Pharmacol 1998 42: 471 478

    Article  CAS  PubMed  Google Scholar 

  38. Tietze F . Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues Anal Biochem 1969 27: 502 522

    Article  CAS  PubMed  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL et al. Protein measurement with the folin phenol reagent J Biol Chem 1951 193: 265 275

    CAS  PubMed  Google Scholar 

  40. Chattergoon DS, Saunders EF, Klein J et al. An improved limited sampling method for individualised busulphan dosing in bone marrow transplantation in children Bone Marrow Transplant 1997 20: 347 354

    Article  CAS  PubMed  Google Scholar 

  41. Shaw PJ, Scharping CE, Brian RJ et al. Busulfan pharmacokinetics using a single daily high-dose regimen in children with acute leukemia Blood 1994 84: 2357 2362

    CAS  PubMed  Google Scholar 

  42. Spiro TE, Mattelaer MA, Efira A et al. Sensitivity of myeloid progenitor cells in healthy subjects and patients with chronic myeloid leukemia to chemotherapeutic agents J Natl Cancer Inst 1981 66: 1053 1059

    Article  CAS  PubMed  Google Scholar 

  43. Standen GR, Blackett NM . Effect of daily administration of cytotoxic drugs on the erythroid and granulocytic repopulating ability of rat bone marrow Acta Haematol 1980 63: 252 256

    Article  CAS  PubMed  Google Scholar 

  44. Hassan M, Ljungman P, Ringden O et al. The effect of busulphan on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite: time interval influence on therapeutic efficacy and therapy-related toxicity Bone Marrow Transplant 2000 25: 915 924

    Article  CAS  PubMed  Google Scholar 

  45. Selig C, Nothdurft W, Fliedner TM . Radioprotective effect of N-acetylcysteine on granulocyte/macrophage colony-forming cells of human bone marrow J Cancer Res Clin Oncol 1993 119: 346 349

    Article  CAS  PubMed  Google Scholar 

  46. Lerza R, Bogliolo G, Muzzulini C et al. Failure of N-acetylcysteine to protect against cis-dichlorodiammineplatinum(II)-induced hematopoietic toxicity in mice Life Sci 1986 38: 1795 1800

    Article  CAS  PubMed  Google Scholar 

  47. Massa G, Muzzulini C, Bogliolo G et al. The effect of N-acetylcysteine on toxicity of cyclophosphamide and doxorubicin on murine hemopoietic progenitors Life Sci 1985 36: 1141 1147

    Article  CAS  PubMed  Google Scholar 

  48. Hare CB, Elion GB, Colvin OM et al. Characterization of the mechanisms of busulfan resistance in a human glioblastoma multiforme xenograft Cancer Chemother Pharmacol 1997 40: 409 414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Swedish Society for Medical Research (grant 280676), Swedish Cancer Society (grant 4147-B99–02XBB, grant 3689-B00–06XAC), Swedish Children Cancer Fund (Proj 01/059), Gustav V Jubilee Fund (grant 00: 510), Stockholm's Cancer Foundation (grant 02:119) and Memory Foundation of Robert Lundberg supported this study.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, Z., Hellström-Lindberg, E., Alsadi, S. et al. The effect of modulation of glutathione cellular content on busulphan-induced cytotoxicity on hematopoietic cells in vitro and in vivo. Bone Marrow Transplant 30, 141–147 (2002). https://doi.org/10.1038/sj.bmt.1703615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1703615

Keywords

This article is cited by

Search

Quick links